These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36050036)

  • 1. Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory.
    Sin JS
    J Chem Phys; 2022 Aug; 157(8):084902. PubMed ID: 36050036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S
    Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.
    Li H; Chen G; Das S
    Colloids Surf B Biointerfaces; 2016 Nov; 147():180-190. PubMed ID: 27543690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jan; 15(4):559-574. PubMed ID: 30520929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the monomer density of grafted polyelectrolyte brushes and their interactions.
    Manciu M; Ruckenstein E
    Langmuir; 2004 Sep; 20(19):8155-64. PubMed ID: 15350087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations.
    Etha SA; Sivasankar VS; Sachar HS; Das S
    Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution.
    Wittemann A; Ballauff M
    Phys Chem Chem Phys; 2006 Dec; 8(45):5269-75. PubMed ID: 19810405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive.
    Wu B; Wang X; Yang J; Hua Z; Tian K; Kou R; Zhang J; Ye S; Luo Y; Craig VS; Zhang G; Liu G
    Sci Adv; 2016 Aug; 2(8):e1600579. PubMed ID: 27532049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroresponsive Polyelectrolyte Brushes Studied by Self-Consistent Field Theory.
    Okrugin BM; Richter RP; Leermakers FAM; Neelov IM; Zhulina EB; Borisov OV
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32295011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.
    Nap RJ; Tagliazucchi M; Szleifer I
    J Chem Phys; 2014 Jan; 140(2):024910. PubMed ID: 24437914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyelectrolyte brushes in external fields: molecular dynamics simulations and mean-field theory.
    Merlitz H; Li C; Wu C; Sommer JU
    Soft Matter; 2015 Jul; 11(28):5688-96. PubMed ID: 26096075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoscale modeling of polyelectrolyte brushes with salt.
    Ibergay C; Malfreyt P; Tildesley DJ
    J Phys Chem B; 2010 Jun; 114(21):7274-85. PubMed ID: 20455593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions on Proteins Arising from the Self-Assembly of a Polyelectrolyte Brush.
    Yao Y; Zhu YL; Ma X; Zhou J
    Langmuir; 2022 Jun; 38(25):7759-7765. PubMed ID: 35709429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ investigation of the adsorption of globular model proteins on stimuli-responsive binary polyelectrolyte brushes.
    Uhlmann P; Houbenov N; Brenner N; Grundke K; Burkert S; Stamm M
    Langmuir; 2007 Jan; 23(1):57-64. PubMed ID: 17190485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyelectrolyte brushes studied by surface forces measurement.
    Kurihara K
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):130-8. PubMed ID: 20452568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bovine Serum Albumin Interaction with Polyanionic and Polycationic Brushes: The Case Theoretical Study.
    Salamatova TO; Zhulina EB; Borisov OV
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.