These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36050036)

  • 21. Large Changes in Protonation of Weak Polyelectrolyte Brushes with Salt Concentration-Implications for Protein Immobilization.
    Ferrand-Drake Del Castillo G; Hailes RLN; Dahlin A
    J Phys Chem Lett; 2020 Jul; 11(13):5212-5218. PubMed ID: 32515599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatic Potential Analysis in Polyelectrolyte Brush-Grafted Microchannels Filled with Polyelectrolyte Dispersion.
    Chun B; Chun MS
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High capacity, charge-selective protein uptake by polyelectrolyte brushes.
    Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD
    Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel.
    Pial TH; Das S
    J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the mechanism of uptake of globular proteins by polyelectrolyte brushes: a two-gradient self-consistent field analysis.
    Leermakers FA; Ballauff M; Borisov OV
    Langmuir; 2007 Mar; 23(7):3937-46. PubMed ID: 17315900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion size effect on electrostatic and electroosmotic properties in soft nanochannels with pH-dependent charge density.
    Sin JS; Kim UH
    Phys Chem Chem Phys; 2018 Sep; 20(35):22961-22971. PubMed ID: 30156252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Counterion-mediated protein adsorption into polyelectrolyte brushes.
    He SZ; Merlitz H; Sommer JU; Wu CX
    Eur Phys J E Soft Matter; 2015 Sep; 38(9):101. PubMed ID: 26385737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes.
    Yigit C; Kanduč M; Ballauff M; Dzubiella J
    Langmuir; 2017 Jan; 33(1):417-427. PubMed ID: 27983858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Salt Concentration on the pH Responses of Strong and Weak Polyelectrolyte Brushes.
    Zhang J; Kou R; Liu G
    Langmuir; 2017 Jul; 33(27):6838-6845. PubMed ID: 28628336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of salt on the compression of polyelectrolyte brushes in a theta solvent.
    Matsen MW
    Eur Phys J E Soft Matter; 2012 Feb; 35(2):13. PubMed ID: 22367602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poisson-Boltzmann theory of pH-sensitive (annealing) polyelectrolyte brush.
    Zhulina EB; Borisov OV
    Langmuir; 2011 Sep; 27(17):10615-33. PubMed ID: 21823583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution.
    Ohshima H
    J Biomater Sci Polym Ed; 2017; 28(10-12):913-924. PubMed ID: 28112036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionizable polyelectrolyte brushes: brush height and electrosteric interaction.
    Biesheuvel PM
    J Colloid Interface Sci; 2004 Jul; 275(1):97-106. PubMed ID: 15158386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic effects in collapse of polyelectrolyte brushes.
    Jiang T; Wu J
    J Phys Chem B; 2008 Jul; 112(26):7713-20. PubMed ID: 18543988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations.
    Wang L; Liang H; Wu J
    J Chem Phys; 2010 Jul; 133(4):044906. PubMed ID: 20687685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and Functionality of Polyelectrolyte Brushes: A Surface Force Perspective.
    Xu X; Billing M; Ruths M; Klok HA; Yu J
    Chem Asian J; 2018 Nov; 13(22):3411-3436. PubMed ID: 30080310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-consistent field theory of polyelectrolyte brushes with finite chain extensibility.
    Lebedeva IO; Zhulina EB; Borisov OV
    J Chem Phys; 2017 Jun; 146(21):214901. PubMed ID: 28595404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes.
    Kesal D; Christau S; Krause P; Möller T; Von Klitzing R
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.