These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36050064)

  • 1. Design and construction of a quantum matter synthesizer.
    Trisnadi J; Zhang M; Weiss L; Chin C
    Rev Sci Instrum; 2022 Aug; 93(8):083203. PubMed ID: 36050064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-spin addressing in an atomic Mott insulator.
    Weitenberg C; Endres M; Sherson JF; Cheneau M; Schauss P; Fukuhara T; Bloch I; Kuhr S
    Nature; 2011 Mar; 471(7338):319-24. PubMed ID: 21412333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrow-Line Cooling and Imaging of Ytterbium Atoms in an Optical Tweezer Array.
    Saskin S; Wilson JT; Grinkemeyer B; Thompson JD
    Phys Rev Lett; 2019 Apr; 122(14):143002. PubMed ID: 31050452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems.
    Asteria L; Zahn HP; Kosch MN; Sengstock K; Weitenberg C
    Nature; 2021 Nov; 599(7886):571-575. PubMed ID: 34819679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-precise holographic beam shaping for microscopic quantum control.
    Zupancic P; Preiss PM; Ma R; Lukin A; Eric Tai M; Rispoli M; Islam R; Greiner M
    Opt Express; 2016 Jun; 24(13):13881-93. PubMed ID: 27410551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices.
    Kim ME; Chang TH; Fields BM; Chen CA; Hung CL
    Nat Commun; 2019 Apr; 10(1):1647. PubMed ID: 30967571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subradiant optical mirror formed by a single structured atomic layer.
    Rui J; Wei D; Rubio-Abadal A; Hollerith S; Zeiher J; Stamper-Kurn DM; Gross C; Bloch I
    Nature; 2020 Jul; 583(7816):369-374. PubMed ID: 32669699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steerable optical tweezers for ultracold atom studies.
    Roberts KO; McKellar T; Fekete J; Rakonjac A; Deb AB; Kjærgaard N
    Opt Lett; 2014 Apr; 39(7):2012-5. PubMed ID: 24686662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
    Bakr WS; Gillen JI; Peng A; Fölling S; Greiner M
    Nature; 2009 Nov; 462(7269):74-7. PubMed ID: 19890326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum simulation of quantum many-body systems with ultracold two-electron atoms in an optical lattice.
    Takahashi Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2022; 98(4):141-160. PubMed ID: 35400693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-powered optical superlattice with robust phase stability for quantum gas microscopy.
    Li MD; Lin W; Luo A; Zhang WY; Sun H; Xiao B; Zheng YG; Yuan ZS; Pan JW
    Opt Express; 2021 Apr; 29(9):13876-13886. PubMed ID: 33985115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum phases from competing short- and long-range interactions in an optical lattice.
    Landig R; Hruby L; Dogra N; Landini M; Mottl R; Donner T; Esslinger T
    Nature; 2016 Apr; 532(7600):476-9. PubMed ID: 27064902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of single-site addressability in a two-dimensional optical lattice.
    Würtz P; Langen T; Gericke T; Koglbauer A; Ott H
    Phys Rev Lett; 2009 Aug; 103(8):080404. PubMed ID: 19792698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptable two-lens high-resolution objective for single-site resolved imaging of atoms in optical lattices.
    Gempel MW; Hartmann T; Schulze TA; Voges KK; Zenesini A; Ospelkaus S
    Rev Sci Instrum; 2019 May; 90(5):053201. PubMed ID: 31153293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-minute-scale atomic coherence and high relative stability in a tweezer clock.
    Young AW; Eckner WJ; Milner WR; Kedar D; Norcia MA; Oelker E; Schine N; Ye J; Kaufman AM
    Nature; 2020 Dec; 588(7838):408-413. PubMed ID: 33328666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical lattices for atom-based quantum microscopy.
    Klinger A; Degenkolb S; Gemelke N; Brickman Soderberg KA; Chin C
    Rev Sci Instrum; 2010 Jan; 81(1):013109. PubMed ID: 20113083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusive and arrested transport of atoms under tailored disorder.
    An FA; Meier EJ; Gadway B
    Nat Commun; 2017 Aug; 8(1):325. PubMed ID: 28835606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of a Fermi-Hubbard Optical Tweezer Array.
    Spar BM; Guardado-Sanchez E; Chi S; Yan ZZ; Bakr WS
    Phys Rev Lett; 2022 Jun; 128(22):223202. PubMed ID: 35714242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.
    Meinert F; Mark MJ; Lauber K; Daley AJ; Nägerl HC
    Phys Rev Lett; 2016 May; 116(20):205301. PubMed ID: 27258874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracold atoms in a tunable optical kagome lattice.
    Jo GB; Guzman J; Thomas CK; Hosur P; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2012 Jan; 108(4):045305. PubMed ID: 22400856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.