These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36050072)

  • 1. The Texas A&M University Hypervelocity Impact Laboratory: A modern aeroballistic range facility.
    Rogers JA; Bass N; Mead PT; Mote A; Lukasik GD; Intardonato M; Harrison K; Leaverton JD; Kota KR; Wilkerson JW; Reddy JN; Kulatilaka WD; Lacy TE
    Rev Sci Instrum; 2022 Aug; 93(8):085106. PubMed ID: 36050072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.
    Watson E; Steinhauser MO
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hypervelocity Impact Behavior and Energy Absorption Evaluation of Fabric.
    Xu H; Yu D; Cui J; Shi Z; Song D; Miao C
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Hypervelocity Sampling of Biosignatures in Space Missions.
    Jaramillo-Botero A; Cable ML; Hofmann AE; Malaska M; Hodyss R; Lunine J
    Astrobiology; 2021 Apr; 21(4):421-442. PubMed ID: 33749334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris.
    Kawai N; Tsurui K; Hasegawa S; Sato E
    Rev Sci Instrum; 2010 Nov; 81(11):115105. PubMed ID: 21133499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressed gas combined single- and two-stage light-gas gun.
    Lamberson LE; Boettcher PA
    Rev Sci Instrum; 2018 Feb; 89(2):023903. PubMed ID: 29495829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First contact: Fine structure of the impact flash and ejecta during hypervelocity impact.
    Simpson G; Moreno J; Shaeffer M; Ramesh KT
    PNAS Nexus; 2023 Jul; 2(7):pgad214. PubMed ID: 37441613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On theory and methods for advanced detonation-driven hypervelocity shock tunnels.
    Jiang Z; Li J; Hu Z; Liu Y; Yu H
    Natl Sci Rev; 2020 Jul; 7(7):1198-1207. PubMed ID: 34692144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival of organic materials in hypervelocity impacts of ice on sand, ice, and water in the laboratory.
    Burchell MJ; Bowden SA; Cole M; Price MC; Parnell J
    Astrobiology; 2014 Jun; 14(6):473-85. PubMed ID: 24901745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Materials design for hypersonics.
    Peters AB; Zhang D; Chen S; Ott C; Oses C; Curtarolo S; McCue I; Pollock TM; Eswarappa Prameela S
    Nat Commun; 2024 Apr; 15(1):3328. PubMed ID: 38637517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.
    Wang G; He J; Zhao J; Tan F; Sun C; Mo J; Xong X; Wu G
    Rev Sci Instrum; 2011 Sep; 82(9):095105. PubMed ID: 21974617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selected ice nanoparticle accelerator hypervelocity impact mass spectrometer (SELINA-HIMS): features and impacts of charged particles.
    Spesyvyi A; Žabka J; Polášek M; Malečková M; Khawaja N; Schmidt J; Kempf S; Postberg F; Charvat A; Abel B
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2273):20230208. PubMed ID: 38736336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.
    Shu A; Collette A; Drake K; Grün E; Horányi M; Kempf S; Mocker A; Munsat T; Northway P; Srama R; Sternovsky Z; Thomas E
    Rev Sci Instrum; 2012 Jul; 83(7):075108. PubMed ID: 22852725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing Hypervelocity Impact (HVI)-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear.
    Liu M; Wang K; Lissenden CJ; Wang Q; Zhang Q; Long R; Su Z; Cui F
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypervelocity Impact Detection and Location for Stiffened Structures Using a Probabilistic Hyperbola Method.
    Yu S; Fan C; Zhao Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulation Study on Impact Initiation on Shielded Charge Using Hypervelocity Composite-Structure Reactive Fragments.
    Lu Y; Tan B; Li Y; Tan S; Yang S; Ji W
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into wave propagation in polyimide films and resistive grid sandwich structures towards a hybrid monitoring of hypervelocity impact.
    Lu S; Zhang P; Yu Q; Wu Q; Gong Z; Liu M
    Ultrasonics; 2024 Sep; 145():107471. PubMed ID: 39305557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the International Workshop on Current Challenges in Liquid and Glass Science, (The Cosener's House, Abingdon 10-12 January 2007).
    Hannon AC; Salmon PS; Soper AK
    J Phys Condens Matter; 2007 Oct; 19(41):410301. PubMed ID: 28192312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.