These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48. A resonant electron capture time-of-flight MS with trochoidal electron monochromator. Voinov VG; Vasil'ev YV; Morré J; Barofsky DF; Deinzer ML; Gonin M; Egan TF; Führer K Anal Chem; 2003 Jul; 75(13):3001-9. PubMed ID: 12964744 [TBL] [Abstract][Full Text] [Related]
49. Electron-recoil ion and recoil ion-projectile coincidence techniques applied to obtain absolute partial collision cross sections. Wolff W; de Souza IJ; Tavares AC; de Oliveira GF; Luna H Rev Sci Instrum; 2012 Dec; 83(12):123107. PubMed ID: 23277972 [TBL] [Abstract][Full Text] [Related]
50. A simple magnetic spectrometer for radiotherapy electron beams. Deasy JO; Almond PR; McEllistrem MT; Ross CK Med Phys; 1994 Nov; 21(11):1703-14. PubMed ID: 7891630 [TBL] [Abstract][Full Text] [Related]
51. Differential Cross Sections for State-to-State Collisions of NO( v = 10) in Near-Copropagating Beams. Amarasinghe C; Li H; Perera CA; Besemer M; van der Avoird A; Groenenboom GC; Xie C; Guo H; Suits AG J Phys Chem Lett; 2019 May; 10(10):2422-2427. PubMed ID: 31021645 [TBL] [Abstract][Full Text] [Related]
52. Energy spread estimation of radioactive oxygen ion beams using optical imaging. Kang HG; Yamamoto S; Takyu S; Nishikido F; Mohammadi A; Akamatsua G; Sato S; Yamaya T Phys Med Biol; 2020 Nov; 65(23):. PubMed ID: 33080581 [TBL] [Abstract][Full Text] [Related]
53. Absolute and effective cross-sections for low-energy electron-scattering processes within condensed matter. Bass AD; Sanche L Radiat Environ Biophys; 1998 Dec; 37(4):243-57. PubMed ID: 10052674 [TBL] [Abstract][Full Text] [Related]
54. Negative-Ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique. Boumsellek S; Alajajian SH; Chutjian A J Am Soc Mass Spectrom; 1992 Mar; 3(3):243-7. PubMed ID: 24242947 [TBL] [Abstract][Full Text] [Related]
55. A versatile ion beam spectrometer for studies of ion interaction with 2D materials. Schwestka J; Melinc D; Heller R; Niggas A; Leonhartsberger L; Winter H; Facsko S; Aumayr F; Wilhelm RA Rev Sci Instrum; 2018 Aug; 89(8):085101. PubMed ID: 30184639 [TBL] [Abstract][Full Text] [Related]
56. High resolution spatial map imaging of a gaseous target. Stei M; von Vangerow J; Otto R; Kelkar AH; Carrascosa E; Best T; Wester R J Chem Phys; 2013 Jun; 138(21):214201. PubMed ID: 23758363 [TBL] [Abstract][Full Text] [Related]
57. Mass spectrometric investigation of dissociative ionization of toxic gases by electrons at 20-1000 eV. Adamczyk B; Bederski K; Wójcik L Biomed Environ Mass Spectrom; 1988 Oct; 16(1-12):415-7. PubMed ID: 3149538 [TBL] [Abstract][Full Text] [Related]
58. Energy distributions from a racetrack microtron measured with a magnetic spectrometer. Sorcini BB; Rosander S Med Phys; 1993; 20(3):695-702. PubMed ID: 8350821 [TBL] [Abstract][Full Text] [Related]
59. Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV. Chen H; Back NL; Bartal T; Beg FN; Eder DC; Link AJ; MacPhee AG; Ping Y; Song PM; Throop A; Van Woerkom L Rev Sci Instrum; 2008 Mar; 79(3):033301. PubMed ID: 18377001 [TBL] [Abstract][Full Text] [Related]
60. Energy loss of hydrogen- and helium-ion beams in DNA: calculations based on a realistic energy-loss function of the target. Abril I; Garcia-Molina R; Denton CD; Kyriakou I; Emfietzoglou D Radiat Res; 2011 Feb; 175(2):247-55. PubMed ID: 21268719 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]