These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36050184)

  • 1. Study on ultrasonic wave propagation in equine leg bone for screening bucked shin.
    Miyashita K; Suzuyama H; Chiba K; Osaki M; Mita H; Tamura N; Matsukawa M
    J Acoust Soc Am; 2022 Aug; 152(2):890. PubMed ID: 36050184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does periosteal scraping of the third metacarpal bone reduce the incidence of 'bucked shins' in young Thoroughbred racehorses?
    Plevin S; McLellan J
    Equine Vet J; 2014 Sep; 46(5):560-6. PubMed ID: 24127983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation study of axial ultrasonic wave propagation in heterogeneous bovine cortical bone.
    Hata T; Nagatani Y; Takano K; Matsukawa M
    J Acoust Soc Am; 2016 Nov; 140(5):3710. PubMed ID: 27908063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic Longitudinal Wave Propagation in Swine Skull.
    Murashima N; Michimoto I; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jan; 68(1):65-71. PubMed ID: 32746210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue evaluation of long cortical bone using ultrasonic guided waves.
    Bai L; Xu K; Li D; Ta D; Le LH; Wang W
    J Biomech; 2018 Aug; 77():83-90. PubMed ID: 29961583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling.
    Guha A; Aynardi M; Shokouhi P; Lissenden CJ
    Ultrasonics; 2021 Jul; 114():106407. PubMed ID: 33667952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Effect of Anisotropy in Ultrasonic-Guided Wave Tomography.
    Ratassepp M; Rao J; Yu X; Fan Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):330-339. PubMed ID: 34550883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of elastic constants and anisotropy patterns in trabecular bone during disuse-induced bone loss assessed by poroelastic ultrasound.
    Cardoso L; Schaffler MB
    J Biomech Eng; 2015 Jan; 137(1):0110081-9. PubMed ID: 25412022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone.
    Yamamoto K; Nakatsuji T; Yaoi Y; Yamato Y; Yanagitani T; Matsukawa M; Yamazaki K; Matsuyama Y
    Ultrasonics; 2012 Mar; 52(3):377-86. PubMed ID: 22014464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative ultrasonic method for measuring the elastic properties of cortical bone.
    Pithioux M; Lasaygues P; Chabrand P
    J Biomech; 2002 Jul; 35(7):961-8. PubMed ID: 12052398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural characterization of trabecular bone using ultrasonic backscattering and diffusion parameters.
    Du H; Mohanty K; Muller M
    J Acoust Soc Am; 2017 May; 141(5):EL445. PubMed ID: 28599551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.
    Anderson CC; Bauer AQ; Holland MR; Pakula M; Laugier P; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2010 Nov; 128(5):2940-8. PubMed ID: 21110589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anisotropy on acoustoelastic birefringence in wood.
    Sasaki Y; Hasegawa M
    Ultrasonics; 2007 May; 46(2):184-90. PubMed ID: 17383706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.