These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36050409)

  • 21. Dynamics of contact line motion during the wetting of rough surfaces and correlation with topographical surface parameters.
    Kubiak KJ; Wilson MC; Mathia TG; Carras S
    Scanning; 2011; 33(5):370-7. PubMed ID: 21938731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of dental rotary instruments on the roughness and wettability of human dentin surfaces.
    Ayad MF; Johnston WM; Rosenstiel SF
    J Prosthet Dent; 2009 Aug; 102(2):81-8. PubMed ID: 19643221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Wettability Metric for Characterization of Capillary Flow on Textured Superhydrophilic Surfaces.
    Allred TP; Weibel JA; Garimella SV
    Langmuir; 2017 Aug; 33(32):7847-7853. PubMed ID: 28727438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces.
    Hejazi V; Moghadam AD; Rohatgi P; Nosonovsky M
    Langmuir; 2014 Aug; 30(31):9423-9. PubMed ID: 25051526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropy in the wetting of rough surfaces.
    Chen Y; He B; Lee J; Patankar NA
    J Colloid Interface Sci; 2005 Jan; 281(2):458-64. PubMed ID: 15571703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thin liquid film flow over substrates with two topographical features.
    Mazloomi A; Moosavi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022409. PubMed ID: 23496528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation.
    Yaghoubi H; Foroutan M
    Phys Chem Chem Phys; 2018 Aug; 20(34):22308-22319. PubMed ID: 30124704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles.
    Chun J; Xu C; Li Q; Chen Y; Zhao Q; Yang W; Wen R; Ma X
    Langmuir; 2022 Jan; 38(1):352-362. PubMed ID: 34812042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials.
    Fonseca-García A; Pérez-Alvarez J; Barrera CC; Medina JC; Almaguer-Flores A; Sánchez RB; Rodil SE
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():119-129. PubMed ID: 27207045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wettability and Surface Roughness Analysis of Laser Surface Texturing of AISI 430 Stainless Steel.
    Moldovan ER; Concheso Doria C; Ocaña JL; Baltes LS; Stanciu EM; Croitoru C; Pascu A; Roata IC; Tierean MH
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of surface roughness, wettability and adhesion of multispecies biofilm on 3D-printed resins for the base and teeth of complete dentures.
    Poker BC; Oliveira VC; Macedo AP; Gonçalves M; Ramos AP; Silva-Lovato CH
    J Appl Oral Sci; 2024; 32():e20230326. PubMed ID: 38656049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation.
    McGaffey M; Zur Linden A; Bachynski N; Oblak M; James F; Weese JS
    PLoS One; 2019; 14(2):e0212995. PubMed ID: 30811509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.
    Vaikuntanathan V; Sivakumar D
    Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of surface roughness of the bracket slot floor--a 3D perspective study.
    Agarwal CO; Vakil KK; Mahamuni A; Tekale PD; Gayake PV; Vakil JK
    Prog Orthod; 2016; 17():3. PubMed ID: 26763529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces.
    Aksoy G; Polat H; Polat M; Coskun G
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):254-9. PubMed ID: 17097279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials.
    Checketts MR; Turkyilmaz I; Asar NV
    J Prosthet Dent; 2014 Nov; 112(5):1265-70. PubMed ID: 24831748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially Engraving Morphological Structure on a Polymeric Surface by Ion Beam Milling.
    Sun A; Wang D; Zhou H; Li Y; Connor C; Kong J; Sun J; Xu BB
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31340531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.