BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36050843)

  • 21. Analysis of oil synthesis pathway in Cyperus esculentus tubers and identification of oleosin and caleosin genes.
    Zhu Y; Wang Y; Wei Z; Zhang X; Jiao B; Tian Y; Yan F; Li J; Liu Y; Yang X; Zhang J; Wang X; Mu Z; Wang Q
    J Plant Physiol; 2023 May; 284():153961. PubMed ID: 36933340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on the development of yellow nutsedge (Cyperus esculentus L.) with growth analysis.
    Buzsáki K; Lehoczky E; Béres I
    Commun Agric Appl Biol Sci; 2008; 73(4):971-4. PubMed ID: 19226851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sucrose metabolism in developing oil-rich tubers of Cyperus esculentus: comparative transcriptome analysis.
    Yang Z; Liu D; Ji H
    BMC Plant Biol; 2018 Jul; 18(1):151. PubMed ID: 30041609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yellow and purple nutsedge and coffee senna as hosts of common plant nematodes in Florida.
    de Lourdes Mendes M; Dickson DW; Crow WT
    J Nematol; 2020; 52():. PubMed ID: 33829174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of yellow and purple nutsedge in elevated CO2 environments with glyphosate and halosulfuron.
    Marble SC; Prior SA; Runion GB; Torbert HA
    Front Plant Sci; 2015; 6():1. PubMed ID: 25653664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorghum cover crop and repeated soil fumigation for purple nutsedge management in tomato production.
    Yu J; Sharpe SM; Boyd NS
    Pest Manag Sci; 2021 Nov; 77(11):4951-4959. PubMed ID: 34184407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracing Key Molecular Regulators of Lipid Biosynthesis in Tuber Development of
    Wang L; Jing M; Ahmad N; Wang Y; Wang Y; Li J; Li X; Liu W; Wang N; Wang F; Dong Y; Li H
    Genes (Basel); 2021 Sep; 12(10):. PubMed ID: 34680888
    [No Abstract]   [Full Text] [Related]  

  • 28. Nutsedge Counts Predict Meloidogyne incognita Juvenile Counts in an Integrated Management System.
    Ou Z; Murray L; Thomas SH; Schroeder J; Libbin J
    J Nematol; 2008 Jun; 40(2):99-108. PubMed ID: 19259526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterisation of two novel genes encoding Δ
    Li T; Sun Y; Chen Y; Gao Y; Gao H; Liu B; Xue J; Li R; Jia X
    Plant Sci; 2022 Jun; 319():111243. PubMed ID: 35487651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3.
    Tian R; Wang F; Zheng Q; Niza VMAGE; Downie AB; Perry SE
    Plant J; 2020 Aug; 103(5):1679-1694. PubMed ID: 32445409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MYB89 Transcription Factor Represses Seed Oil Accumulation.
    Li D; Jin C; Duan S; Zhu Y; Qi S; Liu K; Gao C; Ma H; Zhang M; Liao Y; Chen M
    Plant Physiol; 2017 Feb; 173(2):1211-1225. PubMed ID: 27932421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant.
    Zou Z; Xiao Y; Zhang L; Zhao Y
    Planta; 2023 Feb; 257(3):59. PubMed ID: 36807540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteome plasticity during Physcomitrium patens spore germination - from the desiccated phase to heterotrophic growth and reconstitution of photoautotrophy.
    Hembach L; Niemeyer PW; Schmitt K; Zegers JMS; Scholz P; Brandt D; Dabisch JJ; Valerius O; Braus GH; Schwarzländer M; de Vries J; Rensing SA; Ischebeck T
    Plant J; 2024 Mar; 117(5):1466-1486. PubMed ID: 38059656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings.
    Gao MJ; Lydiate DJ; Li X; Lui H; Gjetvaj B; Hegedus DD; Rozwadowski K
    Plant Cell; 2009 Jan; 21(1):54-71. PubMed ID: 19155348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural modifiers of seed longevity in the Arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3).
    Sugliani M; Rajjou L; Clerkx EJ; Koornneef M; Soppe WJ
    New Phytol; 2009 Dec; 184(4):898-908. PubMed ID: 19754639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First Report of the Yellow Nutsedge Cyst Nematode,
    Hajihassani A; Dutta B; Jagdale GB; Subbotin SA
    J Nematol; 2018; 50(3):456-458. PubMed ID: 30451428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seed priming with light quality and Cyperus rotundus L. extract modulate the germination and initial growth of Moringa oleifera Lam. seedlings.
    Costa PS; Ferraz RLS; Dantas-Neto J; Martins VD; Viégas PRA; Meira KS; Ndhlala AR; Azevedo CAV; Melo AS
    Braz J Biol; 2022; 84():e255836. PubMed ID: 35507962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection and Validation of Reference Genes for qRT-PCR Analysis in the Oil-Rich Tuber Crop Tiger Nut (
    Bai X; Chen T; Wu Y; Tang M; Xu ZF
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14.
    Rueda-Romero P; Barrero-Sicilia C; Gómez-Cadenas A; Carbonero P; Oñate-Sánchez L
    J Exp Bot; 2012 Mar; 63(5):1937-49. PubMed ID: 22155632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.
    Dekkers BJ; He H; Hanson J; Willems LA; Jamar DC; Cueff G; Rajjou L; Hilhorst HW; Bentsink L
    Plant J; 2016 Feb; 85(4):451-65. PubMed ID: 26729600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.