BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36050886)

  • 1. Extent of raft composition in a model plasma membrane.
    Allender DW; Schick M
    Biophys J; 2023 Jun; 122(11):1956-1961. PubMed ID: 36050886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.
    Quinn PJ
    Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes.
    Samsonov AV; Mihalyov I; Cohen FS
    Biophys J; 2001 Sep; 81(3):1486-500. PubMed ID: 11509362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers.
    Saslowsky DE; Lawrence J; Ren X; Brown DA; Henderson RM; Edwardson JM
    J Biol Chem; 2002 Jul; 277(30):26966-70. PubMed ID: 12011066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes.
    Courtney KC; Pezeshkian W; Raghupathy R; Zhang C; Darbyson A; Ipsen JH; Ford DA; Khandelia H; Presley JF; Zha X
    Cell Rep; 2018 Jul; 24(4):1037-1049. PubMed ID: 30044971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A raft-associated species of phosphatidylethanolamine interacts with cholesterol comparably to sphingomyelin. A Langmuir-Blodgett monolayer study.
    Grzybek M; Kubiak J; Łach A; Przybyło M; Sikorski AF
    PLoS One; 2009; 4(3):e5053. PubMed ID: 19330037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models.
    Milhiet PE; Giocondi MC; Le Grimellec C
    J Biol Chem; 2002 Jan; 277(2):875-8. PubMed ID: 11717303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study.
    Pike LJ; Han X; Gross RW
    J Biol Chem; 2005 Jul; 280(29):26796-804. PubMed ID: 15917253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives.
    Filipe HAL; Sousa C; Marquês JT; Vila-Viçosa D; de Granada-Flor A; Viana AS; Santos MSCS; Machuqueiro M; de Almeida RFM
    Free Radic Biol Med; 2018 Feb; 115():232-245. PubMed ID: 29221989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV-1 Gag targeting to the plasma membrane reorganizes sphingomyelin-rich and cholesterol-rich lipid domains.
    Tomishige N; Bin Nasim M; Murate M; Pollet B; Didier P; Godet J; Richert L; Sako Y; Mély Y; Kobayashi T
    Nat Commun; 2023 Nov; 14(1):7353. PubMed ID: 37990014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts.
    Komatsuya K; Kaneko K; Kasahara K
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32748854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway.
    Mendez AJ; Lin G; Wade DP; Lawn RM; Oram JF
    J Biol Chem; 2001 Feb; 276(5):3158-66. PubMed ID: 11073951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a photoactivable GM1 ganglioside analogue to assess lipid distribution in caveolae bilayer.
    Pitto M; Brunner J; Ferraretto A; Ravasi D; Palestini P; Masserini M
    Glycoconj J; 2000; 17(3 -4):215-22. PubMed ID: 11201793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.