These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 36050889)
1. Revisiting the Orbital Energy-Dependent Regularization of Orbital-Optimized Second-Order Møller-Plesset Theory. Rettig A; Shee J; Lee J; Head-Gordon M J Chem Theory Comput; 2022 Sep; 18(9):5382-5392. PubMed ID: 36050889 [TBL] [Abstract][Full Text] [Related]
2. Regularized Orbital-Optimized Second-Order Møller-Plesset Perturbation Theory: A Reliable Fifth-Order-Scaling Electron Correlation Model with Orbital Energy Dependent Regularizers. Lee J; Head-Gordon M J Chem Theory Comput; 2018 Oct; 14(10):5203-5219. PubMed ID: 30130398 [TBL] [Abstract][Full Text] [Related]
3. Exploring the Limits of Second- and Third-Order Møller-Plesset Perturbation Theories for Noncovalent Interactions: Revisiting MP2.5 and Assessing the Importance of Regularization and Reference Orbitals. Loipersberger M; Bertels LW; Lee J; Head-Gordon M J Chem Theory Comput; 2021 Sep; 17(9):5582-5599. PubMed ID: 34382394 [TBL] [Abstract][Full Text] [Related]
4. Third-Order Møller-Plesset Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics, and Intermolecular Interactions. Bertels LW; Lee J; Head-Gordon M J Phys Chem Lett; 2019 Aug; 10(15):4170-4176. PubMed ID: 31259560 [TBL] [Abstract][Full Text] [Related]
5. Polishing the Gold Standard: The Role of Orbital Choice in CCSD(T) Vibrational Frequency Prediction. Bertels LW; Lee J; Head-Gordon M J Chem Theory Comput; 2021 Feb; 17(2):742-755. PubMed ID: 33404238 [TBL] [Abstract][Full Text] [Related]
6. Distinguishing artificial and essential symmetry breaking in a single determinant: approach and application to the C Lee J; Head-Gordon M Phys Chem Chem Phys; 2019 Feb; 21(9):4763-4778. PubMed ID: 30762069 [TBL] [Abstract][Full Text] [Related]
7. Regularized Second-Order Møller-Plesset Theory: A More Accurate Alternative to Conventional MP2 for Noncovalent Interactions and Transition Metal Thermochemistry for the Same Computational Cost. Shee J; Loipersberger M; Rettig A; Lee J; Head-Gordon M J Phys Chem Lett; 2021 Dec; 12(50):12084-12097. PubMed ID: 34910484 [TBL] [Abstract][Full Text] [Related]
8. Utilizing Essential Symmetry Breaking in Auxiliary-Field Quantum Monte Carlo: Application to the Spin Gaps of the C Lee J; Malone FD; Morales MA J Chem Theory Comput; 2020 May; 16(5):3019-3027. PubMed ID: 32283932 [TBL] [Abstract][Full Text] [Related]
10. Two single-reference approaches to singlet biradicaloid problems: Complex, restricted orbitals and approximate spin-projection combined with regularized orbital-optimized Møller-Plesset perturbation theory. Lee J; Head-Gordon M J Chem Phys; 2019 Jun; 150(24):244106. PubMed ID: 31255052 [TBL] [Abstract][Full Text] [Related]
11. Optimizing the regularization in size-consistent second-order Brillouin-Wigner perturbation theory. Carter-Fenk K; Shee J; Head-Gordon M J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37933781 [TBL] [Abstract][Full Text] [Related]
12. Separation of electron-electron and electron-proton correlation in multicomponent orbital-optimized perturbation theory. Fajen OJ; Brorsen KR J Chem Phys; 2020 May; 152(19):194107. PubMed ID: 33687231 [TBL] [Abstract][Full Text] [Related]
13. Repartitioned Brillouin-Wigner perturbation theory with a size-consistent second-order correlation energy. Carter-Fenk K; Head-Gordon M J Chem Phys; 2023 Jun; 158(23):. PubMed ID: 37338032 [TBL] [Abstract][Full Text] [Related]
14. Separate electronic attenuation allowing a spin-component-scaled second-order Møller-Plesset theory to be effective for both thermochemistry and noncovalent interactions. Goldey M; Head-Gordon M J Phys Chem B; 2014 Jun; 118(24):6519-25. PubMed ID: 24564860 [TBL] [Abstract][Full Text] [Related]
15. Orbital-optimized opposite-spin scaled second-order correlation: an economical method to improve the description of open-shell molecules. Lochan RC; Head-Gordon M J Chem Phys; 2007 Apr; 126(16):164101. PubMed ID: 17477583 [TBL] [Abstract][Full Text] [Related]
16. Third-Order Møller-Plesset Theory Made More Useful? The Role of Density Functional Theory Orbitals. Rettig A; Hait D; Bertels LW; Head-Gordon M J Chem Theory Comput; 2020 Dec; 16(12):7473-7489. PubMed ID: 33161713 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Orbital-Optimized MP2.5 for Thermochemistry and Kinetics: Dramatic Failures of Standard Perturbation Theory Approaches for Aromatic Bond Dissociation Energies and Barrier Heights of Radical Reactions. Soydaş E; Bozkaya U J Chem Theory Comput; 2015 Apr; 11(4):1564-73. PubMed ID: 26574366 [TBL] [Abstract][Full Text] [Related]
18. Molecular Magnetizabilities Computed Via Finite Fields: Assessing Alternatives to MP2 and Revisiting Magnetic Exaltations in Aromatic and Antiaromatic Species. Stauch T; Ganoe B; Wong J; Lee J; Rettig A; Liang J; Li J; Epifanovsky E; Head-Gordon T; Head-Gordon M Mol Phys; 2021; 119(21-22):. PubMed ID: 35264815 [TBL] [Abstract][Full Text] [Related]
19. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems. Bozkaya U J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676 [TBL] [Abstract][Full Text] [Related]