These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 36050891)

  • 1. Metal-Organic Framework-Based Nanomaterials for Electrocatalytic Oxygen Evolution.
    Liu Y; Wang Y; Zhao S; Tang Z
    Small Methods; 2022 Oct; 6(10):e2200773. PubMed ID: 36050891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives.
    Kundu A; Kuila T; Murmu NC; Samanta P; Das S
    Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges.
    Zhang K; Zou R
    Small; 2021 Sep; 17(37):e2100129. PubMed ID: 34114334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery.
    Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis.
    Wu H; Wang J; Jin W; Wu Z
    Nanoscale; 2020 Sep; 12(36):18497-18522. PubMed ID: 32839807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids.
    Rong C; Dastafkan K; Wang Y; Zhao C
    Adv Mater; 2023 Dec; 35(49):e2211884. PubMed ID: 37549889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction.
    Du J; Li F; Sun L
    Chem Soc Rev; 2021 Mar; 50(4):2663-2695. PubMed ID: 33400745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF-derived nanoarrays as advanced electrocatalysts for water splitting.
    Zhang Y; Qi L
    Nanoscale; 2022 Sep; 14(34):12196-12218. PubMed ID: 35968835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble-Metal-Free Electrocatalysts for Oxygen Evolution.
    Lyu F; Wang Q; Choi SM; Yin Y
    Small; 2019 Jan; 15(1):e1804201. PubMed ID: 30456922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media.
    Qian Y; Khan IA; Zhao D
    Small; 2017 Oct; 13(37):. PubMed ID: 28752934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction.
    Li L; Wang P; Shao Q; Huang X
    Adv Mater; 2021 Dec; 33(50):e2004243. PubMed ID: 33749035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review.
    Jayabharathi J; Karthikeyan B; Vishnu B; Sriram S
    Phys Chem Chem Phys; 2023 Mar; 25(13):8992-9019. PubMed ID: 36928479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Organic-Framework-Based Nanoarrays for Oxygen Evolution Electrocatalysis.
    Liu W; Ni C; Gao M; Zhao X; Zhang W; Li R; Zhou K
    ACS Nano; 2023 Dec; 17(24):24564-24592. PubMed ID: 38048137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting.
    Jadhav HS; Bandal HA; Ramakrishna S; Kim H
    Adv Mater; 2022 Mar; 34(11):e2107072. PubMed ID: 34846082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.
    Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B
    Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Electrocatalysts for Water Oxidation under Near-Neutral CO
    Jiang N; Zhu Z; Xue W; Xia BY; You B
    Adv Mater; 2022 Jan; 34(2):e2105852. PubMed ID: 34658063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship.
    Li J
    Nanomicro Lett; 2022 Apr; 14(1):112. PubMed ID: 35482112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design.
    Li J; Tian W; Li Q; Zhao S
    ChemSusChem; 2024 Mar; ():e202400239. PubMed ID: 38481084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.