BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 36051253)

  • 1. Layered Tin Chalcogenides SnS and SnSe: Lattice Thermal Conductivity Benchmarks and Thermoelectric Figure of Merit.
    Rundle J; Leoni S
    J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(33):14036-14046. PubMed ID: 36051253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions.
    Skelton JM; Burton LA; Parker SC; Walsh A; Kim CE; Soon A; Buckeridge J; Sokol AA; Catlow CR; Togo A; Tanaka I
    Phys Rev Lett; 2016 Aug; 117(7):075502. PubMed ID: 27563974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe.
    Aseginolaza U; Bianco R; Monacelli L; Paulatto L; Calandra M; Mauri F; Bergara A; Errea I
    Phys Rev Lett; 2019 Feb; 122(7):075901. PubMed ID: 30848620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe.
    Karthikeyan V; Oo SL; Surjadi JU; Li X; Theja VCS; Kannan V; Lau SC; Lu Y; Lam KH; Roy VAL
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58701-58711. PubMed ID: 34851624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Plane Anisotropies of Polarized Raman Response and Electrical Conductivity in Layered Tin Selenide.
    Xu X; Song Q; Wang H; Li P; Zhang K; Wang Y; Yuan K; Yang Z; Ye Y; Dai L
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12601-12607. PubMed ID: 28318225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A first-principles study on the promising thermoelectric properties of SnX (X = S, Se, Te) compounds.
    Wei L; Wang S; Zhu Y; Zhao J; Zhang H; Jin Y; Shi X; Ma L
    Phys Chem Chem Phys; 2024 Jun; 26(22):16337-16349. PubMed ID: 38805067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced Ultrafast Symmetry Switch in SnSe.
    Han Y; Yu J; Zhang H; Xu F; Peng K; Zhou X; Qiao L; Misochko OV; Nakamura KG; Vanacore GM; Hu J
    J Phys Chem Lett; 2022 Jan; 13(2):442-448. PubMed ID: 34990128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe)
    Acharyya P; Roychowdhury S; Samanta M; Biswas K
    J Am Chem Soc; 2020 Nov; ():. PubMed ID: 33215495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe.
    Lou X; Li S; Chen X; Zhang Q; Deng H; Zhang J; Li D; Zhang X; Zhang Y; Zeng H; Tang G
    ACS Nano; 2021 May; 15(5):8204-8215. PubMed ID: 33852270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant improvement in thermoelectric performance of SnSe/SnS
    Zhang R; Zhou Z; Yao Q; Qi N; Chen Z
    Phys Chem Chem Phys; 2021 Feb; 23(6):3794-3801. PubMed ID: 33533354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds.
    Ding G; Gao G; Yao K
    Sci Rep; 2015 Jun; 5():9567. PubMed ID: 26045338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.
    Zhao LD; Lo SH; Zhang Y; Sun H; Tan G; Uher C; Wolverton C; Dravid VP; Kanatzidis MG
    Nature; 2014 Apr; 508(7496):373-7. PubMed ID: 24740068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Transport and Thermoelectric Properties of SnSe-SnTe Solid Solution.
    Cho JY; Siyar M; Jin WC; Hwang E; Bae SH; Hong SH; Kim M; Park C
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rethinking SnSe Thermoelectrics from Computational Materials Science.
    Bai S; Zhang X; Zhao LD
    Acc Chem Res; 2023 Nov; 56(21):3065-3075. PubMed ID: 37801363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature phonon transport properties of SnSe from machine-learning interatomic potential.
    Liu H; Qian X; Bao H; Zhao CY; Gu X
    J Phys Condens Matter; 2021 Jul; 33(40):. PubMed ID: 34256365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications.
    Sattar MA; Al Bouzieh N; Benkraouda M; Amrane N
    Beilstein J Nanotechnol; 2021; 12():1101-1114. PubMed ID: 34703721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced power factor via the control of structural phase transition in SnSe.
    Yu H; Dai S; Chen Y
    Sci Rep; 2016 May; 6():26193. PubMed ID: 27193260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended anharmonic collapse of phonon dispersions in SnS and SnSe.
    Lanigan-Atkins T; Yang S; Niedziela JL; Bansal D; May AF; Puretzky AA; Lin JYY; Pajerowski DM; Hong T; Chi S; Ehlers G; Delaire O
    Nat Commun; 2020 Sep; 11(1):4430. PubMed ID: 32887880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D charge and 2D phonon transports leading to high out-of-plane
    Chang C; Wu M; He D; Pei Y; Wu CF; Wu X; Yu H; Zhu F; Wang K; Chen Y; Huang L; Li JF; He J; Zhao LD
    Science; 2018 May; 360(6390):778-783. PubMed ID: 29773748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures.
    Chandra S; Dutta P; Biswas K
    ACS Nano; 2022 Jan; 16(1):7-14. PubMed ID: 34919391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.