BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 36051294)

  • 21. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.
    Takahashi H; Kopriva S; Giordano M; Saito K; Hell R
    Annu Rev Plant Biol; 2011; 62():157-84. PubMed ID: 21370978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant sulfate assimilation genes: redundancy versus specialization.
    Kopriva S; Mugford SG; Matthewman C; Koprivova A
    Plant Cell Rep; 2009 Dec; 28(12):1769-80. PubMed ID: 19876632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of adenosine triphosphate sulfurylase in cultured tobacco cells. Effects of sulfur and nitrogen sources on the formation and decay of the enzyme.
    Reuveny Z; Filner P
    J Biol Chem; 1977 Mar; 252(6):1858-64. PubMed ID: 845148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cysteine-based redox regulation and signaling in plants.
    Couturier J; Chibani K; Jacquot JP; Rouhier N
    Front Plant Sci; 2013; 4():105. PubMed ID: 23641245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biology of reactive sulfur species (RSS).
    Gruhlke MC; Slusarenko AJ
    Plant Physiol Biochem; 2012 Oct; 59():98-107. PubMed ID: 22541352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of 5'-adenylylsulfate reductase in controlling sulfate reduction in plants.
    Martin MN; Tarczynski MC; Shen B; Leustek T
    Photosynth Res; 2005 Dec; 86(3):309-23. PubMed ID: 16328785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the novel adenosine 5'-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens.
    Wiedemann G; Koprivova A; Schneider M; Herschbach C; Reski R; Kopriva S
    Plant Mol Biol; 2007 Nov; 65(5):667-76. PubMed ID: 17786562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosynthesis of Cysteine.
    Kredich NM
    EcoSal Plus; 2008 Sep; 3(1):. PubMed ID: 26443742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methionine-to-cysteine recycling in Klebsiella aerogenes.
    Seiflein TA; Lawrence JG
    J Bacteriol; 2001 Jan; 183(1):336-46. PubMed ID: 11114934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus.
    Zhang Q; Lee BR; Park SH; Zaman R; Avice JC; Ourry A; Kim TH
    Plant Physiol Biochem; 2015 Feb; 87():1-8. PubMed ID: 25528220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of a sulfite reductase gene and new insights regarding the sulfur-containing amino acid metabolism in the basidiomycetous yeast Cryptococcus neoformans.
    Nguyen PT; Toh-E A; Nguyen NH; Imanishi-Shimizu Y; Watanabe A; Kamei K; Shimizu K
    Curr Genet; 2021 Feb; 67(1):115-128. PubMed ID: 33001274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd²⁺ stress: evidence from transcriptional, enzymatic, and metabolic profiles.
    Zheng C; Chen M; Tao Z; Zhang L; Zhang XF; Wang JY; Liu J
    Extremophiles; 2015 Mar; 19(2):429-36. PubMed ID: 25575615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of sulfate transport and synthesis of sulfur-containing amino acids.
    Saito K
    Curr Opin Plant Biol; 2000 Jun; 3(3):188-95. PubMed ID: 10837270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cmaR gene of Corynebacterium ammoniagenes performs a novel regulatory role in the metabolism of sulfur-containing amino acids.
    Lee SM; Hwang BJ; Kim Y; Lee HS
    Microbiology (Reading); 2009 Jun; 155(Pt 6):1878-1889. PubMed ID: 19383689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signaling by hydrogen sulfide and cyanide through post-translational modification.
    Gotor C; García I; Aroca Á; Laureano-Marín AM; Arenas-Alfonseca L; Jurado-Flores A; Moreno I; Romero LC
    J Exp Bot; 2019 Aug; 70(16):4251-4265. PubMed ID: 31087094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulfur assimilation and the role of sulfur in plant metabolism: a survey.
    Droux M
    Photosynth Res; 2004; 79(3):331-48. PubMed ID: 16328799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfate assimilation in basal land plants - what does genomic sequencing tell us?
    Kopriva S; Wiedemann G; Reski R
    Plant Biol (Stuttg); 2007 Sep; 9(5):556-64. PubMed ID: 17853355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfur metabolism and its contribution to malignancy.
    Ward NP; DeNicola GM
    Int Rev Cell Mol Biol; 2019; 347():39-103. PubMed ID: 31451216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification.
    Pajares MA; Pérez-Sala D
    Antioxid Redox Signal; 2018 Aug; 29(4):408-452. PubMed ID: 29186975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects.
    Schöneich C
    Antioxid Redox Signal; 2017 Mar; 26(8):388-405. PubMed ID: 27288212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.