These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36051565)

  • 1. Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
    Nesler C; Thomas G; Divekar N; Rouse EJ; Gregg RD
    IEEE Robot Autom Lett; 2022 Jul; 7(3):6155-6162. PubMed ID: 36051565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses.
    Zhu H; Nesler C; Divekar N; Peddinti V; Gregg RD
    IEEE ASME Trans Mechatron; 2021 Dec; 26(6):3104-3115. PubMed ID: 34916771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.
    Zhang J; Lin J; Peddinti V; Gregg RD
    Proc Am Control Conf; 2023; 2023():2065-2070. PubMed ID: 37790804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton.
    Sarkisian SV; Gabert L; Lenzi T
    Wearable Technol; 2023; 4():e25. PubMed ID: 38510590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton with High Backdrivability and High Bandwidth.
    Yu S; Huang TH; Yang X; Jiao C; Yang J; Chen Y; Yi J; Su H
    IEEE ASME Trans Mechatron; 2020; 25(4):1794-1802. PubMed ID: 33746504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Validation of a Torque Dense, Highly Backdrivable Powered Knee-Ankle Orthosis.
    Zhu H; Doan J; Stence C; Lv G; Elery T; Gregg R
    IEEE Int Conf Robot Autom; 2017; 2017():504-510. PubMed ID: 29057142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis with High-Torque, Low-Impedance Actuators.
    Elery T; Rezazadeh S; Nesler C; Doan J; Zhu H; Gregg RD
    IEEE Int Conf Robot Autom; 2018 May; 2018():2788-2795. PubMed ID: 30598854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial.
    Rodríguez-Fernández A; Lobo-Prat J; Tarragó R; Chaverri D; Iglesias X; Guirao-Cano L; Font-Llagunes JM
    Sci Rep; 2022 Nov; 12(1):19150. PubMed ID: 36351989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Stiffness-based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance.
    Huang TH; Zhang S; Yu S; MacLean MK; Zhu J; Lallo AD; Jiao C; Bulea TC; Zheng M; Su H
    IEEE Trans Robot; 2022 Jun; 38(3):1442-1459. PubMed ID: 36338603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Backdrivability Modeling of a Portable High Torque Robotic Knee Prosthesis With Intrinsic Compliance For Agile Activities.
    Zhu J; Jiao C; Dominguez I; Yu S; Su H
    IEEE ASME Trans Mechatron; 2022 Aug; 27(4):1837-1845. PubMed ID: 36909775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A passive back exoskeleton supporting symmetric and asymmetric lifting in stoop and squat posture reduces trunk and hip extensor muscle activity and adjusts body posture - A laboratory study.
    Luger T; Bär M; Seibt R; Rimmele P; Rieger MA; Steinhilber B
    Appl Ergon; 2021 Nov; 97():103530. PubMed ID: 34280658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Validation of a Partial-Assist Knee Orthosis with Compact, Backdrivable Actuation.
    Zhu H; Nesler C; Divekar N; Ahmad MT; Gregg RD
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():917-924. PubMed ID: 31374747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Validation of a Powered Knee-Ankle Prosthesis with High-Torque, Low-Impedance Actuators.
    Elery T; Rezazadeh S; Nesler C; Gregg RD
    IEEE Trans Robot; 2020 Dec; 36(6):1649-1668. PubMed ID: 33299386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation.
    Schrade SO; Menner M; Shirota C; Winiger P; Stutz A; Zeilinger MN; Lambercy O; Gassert R
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):535-544. PubMed ID: 32746051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Anthropometrically Parameterized Assistive Lower Limb Exoskeleton.
    Laubscher CA; Farris RJ; van den Bogert AJ; Sawicki JT
    J Biomech Eng; 2021 Oct; 143(10):. PubMed ID: 34008845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting.
    Hwang S; Kim Y; Kim Y
    BMC Musculoskelet Disord; 2009 Feb; 10():15. PubMed ID: 19183507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.