These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36051691)

  • 41. Prediction of circRNA-disease associations based on inductive matrix completion.
    Li M; Liu M; Bin Y; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):42. PubMed ID: 32241268
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction.
    Wu Q; Deng Z; Pan X; Shen HB; Choi KS; Wang S; Wu J; Yu DJ
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35907779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MirLocPredictor: A ConvNet-Based Multi-Label MicroRNA Subcellular Localization Predictor by Incorporating k-Mer Positional Information.
    Asim MN; Malik MI; Zehe C; Trygg J; Dengel A; Ahmed S
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33316943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations.
    Yan C; Wang J; Wu FX
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):520. PubMed ID: 30598076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterogeneous graph inference based on similarity network fusion for predicting lncRNA-miRNA interaction.
    Fan Y; Cui J; Zhu Q
    RSC Adv; 2020 Mar; 10(20):11634-11642. PubMed ID: 35496629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combined embedding model for MiRNA-disease association prediction.
    Liu B; Zhu X; Zhang L; Liang Z; Li Z
    BMC Bioinformatics; 2021 Mar; 22(1):161. PubMed ID: 33765909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The CircRNA-ACAP2/Hsa-miR-21-5p/ Tiam1 Regulatory Feedback Circuit Affects the Proliferation, Migration, and Invasion of Colon Cancer SW480 Cells.
    He JH; Li YG; Han ZP; Zhou JB; Chen WM; Lv YB; He ML; Zuo JD; Zheng L
    Cell Physiol Biochem; 2018; 49(4):1539-1550. PubMed ID: 30212824
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A machine learning framework based on multi-source feature fusion for circRNA-disease association prediction.
    Wang L; Wong L; Li Z; Huang Y; Su X; Zhao B; You Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070867
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning.
    Kouhsar M; Kashaninia E; Mardani B; Rabiee HR
    BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785
    [TBL] [Abstract][Full Text] [Related]  

  • 51. KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network.
    Lan W; Dong Y; Chen Q; Zheng R; Liu J; Pan Y; Chen YP
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MGRCDA: Metagraph Recommendation Method for Predicting CircRNA-Disease Association.
    Wang L; You ZH; Huang DS; Li JQ
    IEEE Trans Cybern; 2023 Jan; 53(1):67-75. PubMed ID: 34236991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting circRNA-drug sensitivity associations via graph attention auto-encoder.
    Deng L; Liu Z; Qian Y; Zhang J
    BMC Bioinformatics; 2022 May; 23(1):160. PubMed ID: 35508967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Construction of a circRNA-miRNA-mRNA network based on differentially co-expressed circular RNA in gastric cancer tissue and plasma by bioinformatics analysis.
    Gong Y; Jiao Y; Qi X; Fu J; Qian J; Zhu J; Yang H; Tang L
    World J Surg Oncol; 2022 Feb; 20(1):34. PubMed ID: 35164778
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network.
    Ma Z; Kuang Z; Deng L
    BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network.
    Wang Z; Lei X
    Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs.
    Chen Y; Wang Y; Ding Y; Su X; Wang C
    Comput Biol Med; 2022 Apr; 143():105322. PubMed ID: 35217342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The integrative regulatory network of circRNA and microRNA in keloid scarring.
    Shi J; Yao S; Chen P; Yang Y; Qian M; Han Y; Wang N; Zhao Y; He Y; Lyu L; Lu D
    Mol Biol Rep; 2020 Jan; 47(1):201-209. PubMed ID: 31612410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.
    Li J; Liu T; Wang J; Li Q; Ning C; Yang Y
    Artif Intell Med; 2021 Aug; 118():102115. PubMed ID: 34412838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double matrix completion for circRNA-disease association prediction.
    Zuo ZL; Cao RF; Wei PJ; Xia JF; Zheng CH
    BMC Bioinformatics; 2021 Jun; 22(1):307. PubMed ID: 34103016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.