These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36051745)
1. Measuring nanoparticles in liquid with attogram resolution using a microfabricated glass suspended microchannel resonator. Daryani MM; Manzaneque T; Wei J; Ghatkesar MK Microsyst Nanoeng; 2022; 8():92. PubMed ID: 36051745 [TBL] [Abstract][Full Text] [Related]
2. Measurement of the average mass of proteins adsorbed to a nanoparticle by using a suspended microchannel resonator. Nejadnik MR; Jiskoot W J Pharm Sci; 2015 Feb; 104(2):698-704. PubMed ID: 25318413 [TBL] [Abstract][Full Text] [Related]
3. Suspended Nanochannel Resonator Arrays with Piezoresistive Sensors for High-Throughput Weighing of Nanoparticles in Solution. Gagino M; Katsikis G; Olcum S; Virot L; Cochet M; Thuaire A; Manalis SR; Agache V ACS Sens; 2020 Apr; 5(4):1230-1238. PubMed ID: 32233476 [TBL] [Abstract][Full Text] [Related]
4. Suspended microchannel resonators with piezoresistive sensors. Lee J; Chunara R; Shen W; Payer K; Babcock K; Burg TP; Manalis SR Lab Chip; 2011 Feb; 11(4):645-51. PubMed ID: 21180703 [TBL] [Abstract][Full Text] [Related]
5. Integrated measurement of the mass and surface charge of discrete microparticles using a suspended microchannel resonator. Dextras P; Burg TP; Manalis SR Anal Chem; 2009 Jun; 81(11):4517-23. PubMed ID: 19476391 [TBL] [Abstract][Full Text] [Related]
6. Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Bryan AK; Hecht VC; Shen W; Payer K; Grover WH; Manalis SR Lab Chip; 2014 Feb; 14(3):569-576. PubMed ID: 24296901 [TBL] [Abstract][Full Text] [Related]
7. Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Modena MM; Wang Y; Riedel D; Burg TP Lab Chip; 2014 Jan; 14(2):342-50. PubMed ID: 24247122 [TBL] [Abstract][Full Text] [Related]
8. Quantification and characterization of micrometer and submicrometer subvisible particles in protein therapeutics by use of a suspended microchannel resonator. Patel AR; Lau D; Liu J Anal Chem; 2012 Aug; 84(15):6833-40. PubMed ID: 22794526 [TBL] [Abstract][Full Text] [Related]
9. Rapid and high-precision sizing of single particles using parallel suspended microchannel resonator arrays and deconvolution. Stockslager MA; Olcum S; Knudsen SM; Kimmerling RJ; Cermak N; Payer KR; Agache V; Manalis SR Rev Sci Instrum; 2019 Aug; 90(8):085004. PubMed ID: 31472632 [TBL] [Abstract][Full Text] [Related]
10. Cellular and biomolecular detection based on suspended microchannel resonators. Ko J; Jeong J; Son S; Lee J Biomed Eng Lett; 2021 Nov; 11(4):367-382. PubMed ID: 34616583 [TBL] [Abstract][Full Text] [Related]
11. Suspended microchannel resonators for ultralow volume universal detection. Son S; Grover WH; Burg TP; Manalis SR Anal Chem; 2008 Jun; 80(12):4757-60. PubMed ID: 18489125 [TBL] [Abstract][Full Text] [Related]
12. Note: precision viscosity measurement using suspended microchannel resonators. Lee I; Park K; Lee J Rev Sci Instrum; 2012 Nov; 83(11):116106. PubMed ID: 23206113 [TBL] [Abstract][Full Text] [Related]
13. Toward attogram mass measurements in solution with suspended nanochannel resonators. Lee J; Shen W; Payer K; Burg TP; Manalis SR Nano Lett; 2010 Jul; 10(7):2537-42. PubMed ID: 20527897 [TBL] [Abstract][Full Text] [Related]
14. Development of assembled microchannel resonator as an alternative fabrication method of a microchannel resonator for mass sensing in flowing liquid. Indianto MA; Toda M; Ono T Biomicrofluidics; 2020 Nov; 14(6):064111. PubMed ID: 33381251 [TBL] [Abstract][Full Text] [Related]
15. Weighing nanoparticles in solution at the attogram scale. Olcum S; Cermak N; Wasserman SC; Christine KS; Atsumi H; Payer KR; Shen W; Lee J; Belcher AM; Bhatia SN; Manalis SR Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1310-5. PubMed ID: 24474753 [TBL] [Abstract][Full Text] [Related]
16. Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFF-MALS-UV-ICP-MS in human samples used for biomonitoring. Bocca B; Battistini B; Petrucci F Talanta; 2020 Dec; 220():121404. PubMed ID: 32928420 [TBL] [Abstract][Full Text] [Related]
17. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
18. Measurement of Navier Slip on Individual Nanoparticles in Liquid. Collis JF; Olcum S; Chakraborty D; Manalis SR; Sader JE Nano Lett; 2021 Jun; 21(12):4959-4965. PubMed ID: 34110825 [TBL] [Abstract][Full Text] [Related]
19. High precision particle mass sensing using microchannel resonators in the second vibration mode. Lee J; Bryan AK; Manalis SR Rev Sci Instrum; 2011 Feb; 82(2):023704. PubMed ID: 21361598 [TBL] [Abstract][Full Text] [Related]
20. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]