These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36051745)
21. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Yang Y; Zhang L; Jin K; He M; Wei W; Chen X; Yang Q; Wang Y; Pang W; Ren X; Duan X Sci Adv; 2022 Jul; 8(30):eabn8440. PubMed ID: 35905179 [TBL] [Abstract][Full Text] [Related]
22. Nanomechanical Molecular Mass Sensing Using Suspended Microchannel Resonators. Martín-Pérez A; Ramos D; Tamayo J; Calleja M Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064951 [TBL] [Abstract][Full Text] [Related]
23. Laser-assisted photothermal heating of a plasmonic nanoparticle-suspended droplet in a microchannel. Walsh T; Lee J; Park K Analyst; 2015 Mar; 140(5):1535-42. PubMed ID: 25587691 [TBL] [Abstract][Full Text] [Related]
24. Selective detection and characterization of nanoparticles from motor vehicles. Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN; Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271 [TBL] [Abstract][Full Text] [Related]
25. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors. Constantinou A; Ghiotto F; Lam KF; Gavriilidis A Analyst; 2014 Jan; 139(1):266-72. PubMed ID: 24223420 [TBL] [Abstract][Full Text] [Related]
27. Using buoyant mass to measure the growth of single cells. Godin M; Delgado FF; Son S; Grover WH; Bryan AK; Tzur A; Jorgensen P; Payer K; Grossman AD; Kirschner MW; Manalis SR Nat Methods; 2010 May; 7(5):387-90. PubMed ID: 20383132 [TBL] [Abstract][Full Text] [Related]
28. Highly sensitive measurement of liquid density in air using suspended microcapillary resonators. Malvar O; Ramos D; Martínez C; Kosaka P; Tamayo J; Calleja M Sensors (Basel); 2015 Mar; 15(4):7650-7. PubMed ID: 25831083 [TBL] [Abstract][Full Text] [Related]
29. Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS. Salou S; Larivière D; Cirtiu CM; Fleury N Anal Bioanal Chem; 2021 Jan; 413(1):171-181. PubMed ID: 33123763 [TBL] [Abstract][Full Text] [Related]
30. Microdevices for biomolecular detection. Manalis SR Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():5395. PubMed ID: 17271565 [TBL] [Abstract][Full Text] [Related]
31. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Zhu J; Özdemir ŞK; He L; Chen DR; Yang L Opt Express; 2011 Aug; 19(17):16195-206. PubMed ID: 21934982 [TBL] [Abstract][Full Text] [Related]
32. Nanotechnology as a therapeutic tool to combat microbial resistance. Pelgrift RY; Friedman AJ Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192 [TBL] [Abstract][Full Text] [Related]
33. Determination of bacterial antibiotic resistance based on osmotic shock response. Knudsen SM; von Muhlen MG; Schauer DB; Manalis SR Anal Chem; 2009 Aug; 81(16):7087-90. PubMed ID: 20337387 [TBL] [Abstract][Full Text] [Related]
34. Detection of nanoparticles in Dutch surface waters. Peters RJB; van Bemmel G; Milani NBL; den Hertog GCT; Undas AK; van der Lee M; Bouwmeester H Sci Total Environ; 2018 Apr; 621():210-218. PubMed ID: 29179077 [TBL] [Abstract][Full Text] [Related]
35. Use of single particle inductively coupled plasma mass spectrometry for understanding the formation of bimetallic nanoparticles. Heetpat N; Sumranjit J; Siripinyanond A Talanta; 2022 Jan; 236():122871. PubMed ID: 34635252 [TBL] [Abstract][Full Text] [Related]
36. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. Zhu S; Ma L; Wang S; Chen C; Zhang W; Yang L; Hang W; Nolan JP; Wu L; Yan X ACS Nano; 2014 Oct; 8(10):10998-1006. PubMed ID: 25300001 [TBL] [Abstract][Full Text] [Related]
37. Measurement of the Density of Engineered Silver Nanoparticles Using Centrifugal FFF-TEM and Single Particle ICP-MS. Tadjiki S; Montaño MD; Assemi S; Barber A; Ranville J; Beckett R Anal Chem; 2017 Jun; 89(11):6056-6064. PubMed ID: 28489347 [TBL] [Abstract][Full Text] [Related]
38. Avoiding transduction-induced heating in suspended microchannel resonators using piezoelectricity. Maillard D; De Pastina A; Abazari AM; Villanueva LG Microsyst Nanoeng; 2021; 7():34. PubMed ID: 34567748 [TBL] [Abstract][Full Text] [Related]
39. Determination of the Density of Protein Particles Using a Suspended Microchannel Resonator. Folzer E; Khan TA; Schmidt R; Finkler C; Huwyler J; Mahler HC; Koulov AV J Pharm Sci; 2015 Dec; 104(12):4034-4040. PubMed ID: 26344825 [TBL] [Abstract][Full Text] [Related]
40. Weighing of biomolecules, single cells and single nanoparticles in fluid. Burg TP; Godin M; Knudsen SM; Shen W; Carlson G; Foster JS; Babcock K; Manalis SR Nature; 2007 Apr; 446(7139):1066-9. PubMed ID: 17460669 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]