BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36051854)

  • 1. Sigma non-opioid receptor 1 is a potential therapeutic target for long QT syndrome.
    Song L; Bekdash R; Morikawa K; Quejada JR; Klein AD; Aina-Badejo D; Yoshida K; Yamamoto HE; Chalan A; Yang R; Patel A; Sirabella D; Lee TM; Joseph LC; Kawano F; Warren JS; Soni RK; Morrow JP; Yazawa M
    Nat Cardiovasc Res; 2022 Feb; 1(2):142-156. PubMed ID: 36051854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rescue of protein expression defects may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2 mutations.
    Perry MD; Ng CA; Phan K; David E; Steer K; Hunter MJ; Mann SA; Imtiaz M; Hill AP; Ke Y; Vandenberg JI
    J Physiol; 2016 Jul; 594(14):4031-49. PubMed ID: 26958806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocardiographic T-wave parameters in families with long QT syndrome.
    Markiewicz-Łoskot G; Moric-Janiszewska E; Mazurek B; Łoskot M; Bartusek M; Skierska A; Szydłowski L
    Adv Clin Exp Med; 2018 Apr; 27(4):501-507. PubMed ID: 29616748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome.
    Wemhöner K; Friedrich C; Stallmeyer B; Coffey AJ; Grace A; Zumhagen S; Seebohm G; Ortiz-Bonnin B; Rinné S; Sachse FB; Schulze-Bahr E; Decher N
    J Mol Cell Cardiol; 2015 Mar; 80():186-95. PubMed ID: 25633834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes.
    Mehta A; Sequiera GL; Ramachandra CJ; Sudibyo Y; Chung Y; Sheng J; Wong KY; Tan TH; Wong P; Liew R; Shim W
    Cardiovasc Res; 2014 Jun; 102(3):497-506. PubMed ID: 24623279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long QT syndrome type 1 and 2 patients respond differently to arrhythmic triggers: The TriQarr in vivo study.
    Marstrand P; Almatlouh K; Kanters JK; Graff C; Christensen AH; Bundgaard H; Theilade J
    Heart Rhythm; 2021 Feb; 18(2):241-249. PubMed ID: 32882399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomic and Cardiac Repolarization Lability in Long QT Syndrome Patients.
    DeMaria N; Selmi A; Kashtan S; Xia X; Wang M; Zareba W; Couderc JP; Auerbach DS
    Auton Neurosci; 2020 Dec; 229():102723. PubMed ID: 32942226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperinsulinemic Hypoglycemia Associated with a Ca
    Kummer S; Rinné S; Seemann G; Bachmann N; Timothy K; Thornton PS; Pillekamp F; Mayatepek E; Bergmann C; Meissner T; Decher N
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel KCNQ1 and HERG missense mutations in Dutch long-QT families.
    Jongbloed RJ; Wilde AA; Geelen JL; Doevendans P; Schaap C; Van Langen I; van Tintelen JP; Cobben JM; Beaufort-Krol GC; Geraedts JP; Smeets HJ
    Hum Mutat; 1999; 13(4):301-10. PubMed ID: 10220144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers.
    Calorio C; Gavello D; Guarina L; Salio C; Sassoè-Pognetto M; Riganti C; Bianchi FT; Hofer NT; Tuluc P; Obermair GJ; Defilippi P; Balzac F; Turco E; Bett GC; Rasmusson RL; Carbone E
    J Physiol; 2019 Mar; 597(6):1705-1733. PubMed ID: 30629744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Duncan G; Firth K; George V; Hoang MD; Staniforth A; Smith G; Denning C
    Stem Cells Dev; 2017 Dec; 26(23):1695-1705. PubMed ID: 28992755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8).
    Drum BM; Dixon RE; Yuan C; Cheng EP; Santana LF
    J Mol Cell Cardiol; 2014 Jan; 66():63-71. PubMed ID: 24215710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geno- and phenotypic characteristics and clinical outcomes of
    Borbás J; Vámos M; Hategan L; Hanák L; Farkas N; Szakács Z; Csupor D; Tél B; Kupó P; Csányi B; Nagy V; Komócsi A; Habon T; Hegyi P; Sepp R
    Front Cardiovasc Med; 2022; 9():1021009. PubMed ID: 36523353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timothy syndrome-like condition with syndactyly but without prolongation of the QT interval.
    Kosaki R; Ono H; Terashima H; Kosaki K
    Am J Med Genet A; 2018 Jul; 176(7):1657-1661. PubMed ID: 29736926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the CACNA1C-R518C Missense Mutation in the Pathobiology of Long-QT Syndrome Using Human Induced Pluripotent Stem Cell Cardiomyocytes Shows Action Potential Prolongation and L-Type Calcium Channel Perturbation.
    Estes SI; Ye D; Zhou W; Dotzler SM; Tester DJ; Bos JM; Kim CSJ; Ackerman MJ
    Circ Genom Precis Med; 2019 Aug; 12(8):e002534. PubMed ID: 31430211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long QT syndrome type 8: novel CACNA1C mutations causing QT prolongation and variant phenotypes.
    Fukuyama M; Wang Q; Kato K; Ohno S; Ding WG; Toyoda F; Itoh H; Kimura H; Makiyama T; Ito M; Matsuura H; Horie M
    Europace; 2014 Dec; 16(12):1828-37. PubMed ID: 24728418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome.
    Marcantoni A; Calorio C; Hidisoglu E; Chiantia G; Carbone E
    Pflugers Arch; 2020 Jul; 472(7):775-789. PubMed ID: 32621084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long QT syndrome with craniofacial, digital, and neurologic features: Is it useful to distinguish between Timothy syndrome types 1 and 2?
    Diep V; Seaver LH
    Am J Med Genet A; 2015 Nov; 167A(11):2780-5. PubMed ID: 26227324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promise and Potential Peril With Lumacaftor for the Trafficking Defective Type 2 Long-QT Syndrome-Causative Variants, p.G604S, p.N633S, and p.R685P, Using Patient-Specific Re-Engineered Cardiomyocytes.
    O'Hare BJ; John Kim CS; Hamrick SK; Ye D; Tester DJ; Ackerman MJ
    Circ Genom Precis Med; 2020 Oct; 13(5):466-475. PubMed ID: 32940533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of CDK5 Alleviates the Cardiac Phenotypes in Timothy Syndrome.
    Song L; Park SE; Isseroff Y; Morikawa K; Yazawa M
    Stem Cell Reports; 2017 Jul; 9(1):50-57. PubMed ID: 28648896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.