BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36051882)

  • 21. Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix.
    Kapoor TM; Mitchison TJ
    J Cell Biol; 2001 Sep; 154(6):1125-33. PubMed ID: 11564753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HSP70 regulates Eg5 distribution within the mitotic spindle and modulates the cytotoxicity of Eg5 inhibitors.
    Fang CT; Kuo HH; Hsu SC; Yih LH
    Cell Death Dis; 2020 Sep; 11(8):715. PubMed ID: 32873777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kif15 cooperates with eg5 to promote bipolar spindle assembly.
    Tanenbaum ME; Macůrek L; Janssen A; Geers EF; Alvarez-Fernández M; Medema RH
    Curr Biol; 2009 Nov; 19(20):1703-11. PubMed ID: 19818618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocontrol of mitotic kinesin Eg5 facilitated by thiol-reactive photochromic molecules incorporated into the loop L5 functional loop.
    Ishikawa K; Tamura Y; Maruta S
    J Biochem; 2014 Mar; 155(3):195-206. PubMed ID: 24334276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical and Biophysical characterization of curcumin binding to human mitotic kinesin Eg5: Insights into the inhibitory mechanism of curcumin on Eg5.
    Raghav D; Sebastian J; Rathinasamy K
    Int J Biol Macromol; 2018 Apr; 109():1189-1208. PubMed ID: 29162464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding antibody-antigen associations by molecular dynamics simulations: detection of important intra- and inter-molecular salt bridges.
    Sinha N; Li Y; Lipschultz CA; Smith-Gill SJ
    Cell Biochem Biophys; 2007; 47(3):361-75. PubMed ID: 17652781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding patterns of inhibitors to different pockets of kinesin Eg5.
    Jia N; Zhang B; Huo Z; Qin J; Ji Q; Geng Y
    Arch Biochem Biophys; 2024 Jun; 756():109998. PubMed ID: 38641233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying and characterising promising small molecule inhibitors of kinesin spindle protein using ligand-based virtual screening, molecular docking, molecular dynamics and MM‑GBSA calculations.
    Elseginy SA
    J Comput Aided Mol Des; 2024 Apr; 38(1):16. PubMed ID: 38556596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles.
    Cahu J; Olichon A; Hentrich C; Schek H; Drinjakovic J; Zhang C; Doherty-Kirby A; Lajoie G; Surrey T
    PLoS One; 2008; 3(12):e3936. PubMed ID: 19079595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinesin-5 Eg5 is essential for spindle assembly and chromosome alignment of mouse spermatocytes.
    She ZY; Zhong N; Yu KW; Xiao Y; Wei YL; Lin Y; Li YL; Lu MH
    Cell Div; 2020; 15():6. PubMed ID: 32165913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morelloflavone as a novel inhibitor of mitotic kinesin Eg5.
    Ogunwa TH; Taii K; Sadakane K; Kawata Y; Maruta S; Miyanishi T
    J Biochem; 2019 Aug; 166(2):129-137. PubMed ID: 30785183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation.
    van Heesbeen RGHP; Raaijmakers JA; Tanenbaum ME; Halim VA; Lelieveld D; Lieftink C; Heck AJR; Egan DA; Medema RH
    Chromosoma; 2017 Aug; 126(4):473-486. PubMed ID: 27354041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping the Processivity Determinants of the Kinesin-3 Motor Domain.
    Scarabelli G; Soppina V; Yao XQ; Atherton J; Moores CA; Verhey KJ; Grant BJ
    Biophys J; 2015 Oct; 109(8):1537-40. PubMed ID: 26488644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel scaffolds to inhibit human mitotic kinesin Eg5 targeting the second allosteric binding site using in silico methods.
    Makala H; Ulaganathan V
    J Recept Signal Transduct Res; 2018 Feb; 38(1):12-19. PubMed ID: 29041840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitotic spindle organization by a plus-end-directed microtubule motor.
    Sawin KE; LeGuellec K; Philippe M; Mitchison TJ
    Nature; 1992 Oct; 359(6395):540-3. PubMed ID: 1406972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loop L5 assumes three distinct orientations during the ATPase cycle of the mitotic kinesin Eg5: a transient and time-resolved fluorescence study.
    Muretta JM; Behnke-Parks WM; Major J; Petersen KJ; Goulet A; Moores CA; Thomas DD; Rosenfeld SS
    J Biol Chem; 2013 Nov; 288(48):34839-49. PubMed ID: 24145034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the intermediate states of ADP-ATP exchange: a simulation study on Eg5.
    Zhang W
    J Phys Chem B; 2011 Feb; 115(5):784-95. PubMed ID: 21192710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5.
    DeBonis S; Simorre JP; Crevel I; Lebeau L; Skoufias DA; Blangy A; Ebel C; Gans P; Cross R; Hackney DD; Wade RH; Kozielski F
    Biochemistry; 2003 Jan; 42(2):338-49. PubMed ID: 12525161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetochore-microtubule stability governs the metaphase requirement for Eg5.
    Gayek AS; Ohi R
    Mol Biol Cell; 2014 Jul; 25(13):2051-60. PubMed ID: 24807901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
    Albeck S; Unger R; Schreiber G
    J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.