These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 36052076)

  • 1. CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer.
    Cheng T; Wu Y; Liu Z; Yu Y; Sun S; Guo M; Sun B; Huang C
    Front Immunol; 2022; 13():970950. PubMed ID: 36052076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fatty-acid metabolism-based classification for triple negative breast cancer.
    Yang X; Tang W; He Y; An H; Wang J
    Aging (Albany NY); 2023 Feb; 15(4):1177-1198. PubMed ID: 36880837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research and experimental verification on the mechanisms of cellular senescence in triple-negative breast cancer.
    Cao T; Huang M; Huang X; Tang T
    PeerJ; 2024; 12():e16935. PubMed ID: 38435998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and verification of a novel immunogenic cell death-related signature for predicting the prognosis and immune infiltration in triple-negative breast cancer.
    Li J; Li Z; Yang W; Pan J; You H; Yang L; Zhang X
    Cancer Rep (Hoboken); 2024 Mar; 7(3):e2007. PubMed ID: 38425247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural killer cell-related prognostic risk model predicts prognosis and treatment outcomes in triple-negative breast cancer.
    Liu Z; Ding M; Qiu P; Pan K; Guo Q
    Front Immunol; 2023; 14():1200282. PubMed ID: 37520534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory T cells are associated with the tumor immune microenvironment and immunotherapy response in triple-negative breast cancer.
    Huang P; Zhou X; Zheng M; Yu Y; Jin G; Zhang S
    Front Immunol; 2023; 14():1263537. PubMed ID: 37767092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Genes Associated with Prognosis and Immunotherapy Prediction in Triple-Negative Breast Cancer via M1/M2 Macrophage Ratio.
    Liu J; Deng Y; Liu Z; Li X; Zhang M; Yu X; Liu T; Chen K; Li Z
    Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512096
    [No Abstract]   [Full Text] [Related]  

  • 8. The molecular subtypes of triple negative breast cancer were defined and a ligand-receptor pair score model was constructed by comprehensive analysis of ligand-receptor pairs.
    Pan W; Song K; Zhang Y; Yang C; Zhang Y; Ji F; Zhang J; Shi J; Wang K
    Front Immunol; 2022; 13():982486. PubMed ID: 36119101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel model associated with tumor microenvironment on predicting prognosis and immunotherapy in triple negative breast cancer.
    Zhang J; Zhang M; Tian Q; Yang J
    Clin Exp Med; 2023 Nov; 23(7):3867-3881. PubMed ID: 37219794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor microenvironment characterization in triple-negative breast cancer identifies prognostic gene signature.
    Qin Y; Deng J; Zhang L; Yuan J; Yang H; Li Q
    Aging (Albany NY); 2021 Feb; 13(4):5485-5505. PubMed ID: 33536349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analyses of cuproptosis-related gene CDKN2A on prognosis and immunologic therapy in human tumors.
    Zhang D; Wang T; Zhou Y; Zhang X
    Medicine (Baltimore); 2023 Apr; 102(14):e33468. PubMed ID: 37026918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a prognostic model for triple-negative breast cancer based on immune-related genes, and associations between the tumor immune microenvironment and immunological therapy.
    Zhu Y; Tao LF; Liu JY; Wang YX; Huang H; Jiang YN; Qian WF
    Cancer Med; 2023 Jul; 12(14):15704-15719. PubMed ID: 37306188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An iron metabolism and immune related gene signature for the prediction of clinical outcome and molecular characteristics of triple-negative breast cancer.
    Li XF; Fu WF; Zhang J; Song CG
    BMC Cancer; 2022 Jun; 22(1):619. PubMed ID: 35668369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinase inhibitors for precision therapy of triple-negative breast cancer: Progress, challenges, and new perspectives on targeting this heterogeneous disease.
    Mehlich D; Marusiak AA
    Cancer Lett; 2022 Oct; 547():215775. PubMed ID: 35667515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery.
    Zou Y; Xie J; Zheng S; Liu W; Tang Y; Tian W; Deng X; Wu L; Zhang Y; Wong CW; Tan D; Liu Q; Xie X
    Int J Surg; 2022 Nov; 107():106936. PubMed ID: 36341760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Validation of a Novel Glycolysis-Related Gene Signature for Predicting the Prognosis and Therapeutic Response in Triple-Negative Breast Cancer.
    Zheng J; Zhang YF; Han GH; Fan MY; Du MH; Zhang GC; Zhang B; Qiao J; Zhang SX; Cao JM
    Adv Ther; 2023 Jan; 40(1):310-330. PubMed ID: 36316558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prognostic marker KRT81 is involved in suppressing CD8 + T cells and predicts immunotherapy response for triple-negative breast cancer.
    Yan Z; Zhong Z; Shi C; Feng M; Feng X; Liu T
    Cancer Biol Ther; 2024 Dec; 25(1):2355705. PubMed ID: 38778753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triple-Negative Breast Cancer Analysis Based on Metabolic Gene Classification and Immunotherapy.
    Zhou Y; Che Y; Fu Z; Zhang H; Wu H
    Front Public Health; 2022; 10():902378. PubMed ID: 35875026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer.
    Song S; Zhang M; Xie P; Wang S; Wang Y
    Front Immunol; 2022; 13():978909. PubMed ID: 36341328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of molecular subtypes and a six-gene risk model related to cuproptosis for triple negative breast cancer.
    Zhu B; Wang S; Wang R; Wang X
    Front Genet; 2022; 13():1022236. PubMed ID: 36386788
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.