These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 36052643)
1. The histone methyltransferase SETD2 negatively regulates cell size. Molenaar TM; Malik M; Silva J; Liu NQ; Haarhuis JHI; Ambrosi C; Kwesi-Maliepaard EM; van Welsem T; Baubec T; Faller WJ; van Leeuwen F J Cell Sci; 2022 Oct; 135(19):. PubMed ID: 36052643 [TBL] [Abstract][Full Text] [Related]
2. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Molenaar TM; van Leeuwen F Cell Mol Life Sci; 2022 Jun; 79(6):346. PubMed ID: 35661267 [TBL] [Abstract][Full Text] [Related]
3. Cryo-EM structure of SETD2/Set2 methyltransferase bound to a nucleosome containing oncohistone mutations. Liu Y; Zhang Y; Xue H; Cao M; Bai G; Mu Z; Yao Y; Sun S; Fang D; Huang J Cell Discov; 2021 May; 7(1):32. PubMed ID: 33972509 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Lam UTF; Chen ES Int J Biochem Cell Biol; 2022 Mar; 144():106155. PubMed ID: 34990836 [TBL] [Abstract][Full Text] [Related]
5. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3). Berthelet J; Michail C; Bui LC; Le Coadou L; Sirri V; Wang L; Dulphy N; Dupret JM; Chomienne C; Guidez F; Rodrigues-Lima F Mol Pharmacol; 2021 Sep; 100(3):283-294. PubMed ID: 34266924 [TBL] [Abstract][Full Text] [Related]
6. The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Chang S; Yim S; Park H Exp Mol Med; 2019 Jun; 51(6):1-17. PubMed ID: 31221981 [TBL] [Abstract][Full Text] [Related]
7. Molecular determinants for α-tubulin methylation by SETD2. Kearns S; Mason FM; Rathmell WK; Park IY; Walker C; Verhey KJ; Cianfrocco MA J Biol Chem; 2021 Jul; 297(1):100898. PubMed ID: 34157286 [TBL] [Abstract][Full Text] [Related]
8. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Tan MK; Lim HJ; Harper JW Mol Cell Biol; 2011 Sep; 31(18):3687-99. PubMed ID: 21768309 [TBL] [Abstract][Full Text] [Related]
9. Shaping the cellular landscape with Set2/SETD2 methylation. McDaniel SL; Strahl BD Cell Mol Life Sci; 2017 Sep; 74(18):3317-3334. PubMed ID: 28386724 [TBL] [Abstract][Full Text] [Related]
10. Integrated Genomic and Proteomic Analyses Reveal Novel Mechanisms of the Methyltransferase SETD2 in Renal Cell Carcinoma Development. Li L; Miao W; Huang M; Williams P; Wang Y Mol Cell Proteomics; 2019 Mar; 18(3):437-447. PubMed ID: 30487242 [TBL] [Abstract][Full Text] [Related]
11. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. Gautam D; Johnson BA; Mac M; Moody CA PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361 [TBL] [Abstract][Full Text] [Related]
12. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. Chen R; Zhao WQ; Fang C; Yang X; Ji M J Cancer; 2020; 11(11):3349-3356. PubMed ID: 32231741 [TBL] [Abstract][Full Text] [Related]
13. The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway. Mac M; DeVico BM; Raspanti SM; Moody CA J Virol; 2023 May; 97(5):e0020123. PubMed ID: 37154769 [TBL] [Abstract][Full Text] [Related]
14. SETD2: an epigenetic modifier with tumor suppressor functionality. Li J; Duns G; Westers H; Sijmons R; van den Berg A; Kok K Oncotarget; 2016 Aug; 7(31):50719-50734. PubMed ID: 27191891 [TBL] [Abstract][Full Text] [Related]
15. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation. Fahey CC; Davis IJ Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28159833 [TBL] [Abstract][Full Text] [Related]
16. Structural and enzymatic evidence for the methylation of the ACK1 tyrosine kinase by the histone lysine methyltransferase SETD2. Le Coadou L; Berthelet J; Mechaly AE; Michail C; Bui LC; Dairou J; Haouz A; Dupret JM; Rodrigues Lima F Biochem Biophys Res Commun; 2024 Feb; 695():149400. PubMed ID: 38160530 [TBL] [Abstract][Full Text] [Related]
17. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Yoh SM; Lucas JS; Jones KA Genes Dev; 2008 Dec; 22(24):3422-34. PubMed ID: 19141475 [TBL] [Abstract][Full Text] [Related]
19. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. Bhattacharya S; Lange JJ; Levy M; Florens L; Washburn MP; Workman JL J Biol Chem; 2021 Sep; 297(3):101075. PubMed ID: 34391778 [TBL] [Abstract][Full Text] [Related]
20. Expression and significance of histone methyltransferase SET domain containing 2 with histone H3 lysine 36 trimethylation in mouse hepatic oval cells differentiated into bile duct epithelial cells Jin L; Su Z; Huang S; Tan Y; Mrema IG; Chen Y Mol Med Rep; 2023 Mar; 27(3):. PubMed ID: 36799151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]