BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36053050)

  • 1. In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods.
    Li L; Lu Z; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2022 Sep; 35(9):1614-1624. PubMed ID: 36053050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
    Siramshetty VB; Shah P; Kerns E; Nguyen K; Yu KR; Kabir M; Williams J; Neyra J; Southall N; Nguyễn ÐT; Xu X
    Sci Rep; 2020 Nov; 10(1):20713. PubMed ID: 33244000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay.
    Kosugi Y; Hosea N
    Mol Pharm; 2020 Jul; 17(7):2299-2309. PubMed ID: 32478525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.
    Perryman AL; Stratton TP; Ekins S; Freundlich JS
    Pharm Res; 2016 Feb; 33(2):433-49. PubMed ID: 26415647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of in silico models for human liver microsomal stability.
    Lee PH; Cucurull-Sanchez L; Lu J; Du YJ
    J Comput Aided Mol Des; 2007 Dec; 21(12):665-73. PubMed ID: 17599241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.
    Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y
    Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confident application of a global human liver microsomal activity QSAR.
    Stålring J; Sohlenius-Sternbeck AK; Terelius Y; Parkes K
    Future Med Chem; 2018 Jul; 10(13):1575-1588. PubMed ID: 29953260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consideration of vendor-related differences in hepatic metabolic stability data to optimize early ADME screening in drug discovery.
    Shah P; Padilha EC; Kato R; Siramshetty VB; Huang W; Xu X
    SLAS Discov; 2024 Jan; 29(1):34-39. PubMed ID: 37573009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability.
    Hu Y; Unwalla R; Denny RA; Bikker J; Di L; Humblet C
    J Comput Aided Mol Des; 2010 Jan; 24(1):23-35. PubMed ID: 19937264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Symbolic Regression Model for the Prediction of Drug Binding to Human Liver Microsomes.
    Van Rompaey D; Morrison D; Van Den Bergh A; Wegner JK
    Mol Pharm; 2023 May; 20(5):2436-2442. PubMed ID: 37000176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery.
    Aliagas I; Gobbi A; Heffron T; Lee ML; Ortwine DF; Zak M; Khojasteh SC
    J Comput Aided Mol Des; 2015 Apr; 29(4):327-38. PubMed ID: 25708388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting human liver microsomal stability with machine learning techniques.
    Sakiyama Y; Yuki H; Moriya T; Hattori K; Suzuki M; Shimada K; Honma T
    J Mol Graph Model; 2008 Feb; 26(6):907-15. PubMed ID: 17683964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development and validation of a computational model to predict rat liver microsomal clearance.
    Chang C; Duignan DB; Johnson KD; Lee PH; Cowan GS; Gifford EM; Stankovic CJ; Lepsy CS; Stoner CL
    J Pharm Sci; 2009 Aug; 98(8):2857-67. PubMed ID: 19116953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Farnesoid X Receptor Disruptors with Machine Learning Methods.
    Chen Y; Yang H; Wu Z; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2018 Nov; 31(11):1128-1137. PubMed ID: 30371063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Prediction of CYP2C8 Inhibition with Machine-Learning Methods.
    Zhang X; Zhao P; Wang Z; Xu X; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2021 Aug; 34(8):1850-1859. PubMed ID: 34255486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data Curation can Improve the Prediction Accuracy of Metabolic Intrinsic Clearance.
    Esaki T; Watanabe R; Kawashima H; Ohashi R; Natsume-Kitatani Y; Nagao C; Mizuguchi K
    Mol Inform; 2019 Jan; 38(1-2):e1800086. PubMed ID: 30247811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Fraction Unbound in Microsomal and Hepatocyte Incubations: A Comparison of Methods across Industry Datasets.
    Winiwarter S; Chang G; Desai P; Menzel K; Faller B; Arimoto R; Keefer C; Broccatell F
    Mol Pharm; 2019 Sep; 16(9):4077-4085. PubMed ID: 31348668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution.
    Emoto C; Murayama N; Rostami-Hodjegan A; Yamazaki H
    Curr Drug Metab; 2010 Oct; 11(8):678-85. PubMed ID: 20973757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.