These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36053120)

  • 1. Protactinium and Actinium Monohydrides: A Theoretical Study on Their Spectroscopic and Thermodynamic Properties.
    de Melo GF; Dixon DA
    J Phys Chem A; 2022 Sep; 126(36):6171-6184. PubMed ID: 36053120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic and Electronic Properties of NpH
    de Melo GF; Dixon DA
    J Phys Chem A; 2023 Apr; 127(14):3179-3189. PubMed ID: 36988907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and Computational Description of the Interaction of H and H
    de Melo GF; Vasiliu M; Marshall M; Zhu Z; Tufekci BA; Ciborowski SM; Blankenhorn M; Harris RM; Bowen KH; Dixon DA
    J Phys Chem A; 2022 Jul; 126(27):4432-4443. PubMed ID: 35767645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Th with H
    Vasiliu M; Peterson KA; Marshall M; Zhu Z; Tufekci BA; Bowen KH; Dixon DA
    J Phys Chem A; 2022 Jan; 126(2):198-210. PubMed ID: 34989579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Properties of Thorium Hydrides: Electron Affinities and Thermochemistry.
    Vasiliu M; Marshall M; Zhu Z; Bowen KH; Dixon DA
    J Phys Chem A; 2022 Apr; 126(15):2388-2396. PubMed ID: 35411767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic and Electronic Properties of UO
    Romeu JGF; Hunt ARE; de Melo GF; Peterson KA; Dixon DA
    J Phys Chem A; 2024 Jul; 128(28):5586-5604. PubMed ID: 38954748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bonding, Thermodynamics, and Spectroscopy of the Metal Borides UB
    de Melo GF; Dixon DA
    J Phys Chem A; 2023 Feb; 127(7):1588-1597. PubMed ID: 36753327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and Experimental Study of the Spectroscopy and Thermochemistry of UC
    de Melo GF; Vasiliu M; Liu G; Ciborowski S; Zhu Z; Blankenhorn M; Harris R; Martinez-Martinez C; Dipalo M; Peterson KA; Bowen KH; Dixon DA
    J Phys Chem A; 2022 Dec; 126(50):9392-9407. PubMed ID: 36508745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An = Ac, Th, Pa, U, Np, Pu, Am and Cm).
    Pereira CC; Marsden CJ; Marçalo J; Gibson JK
    Phys Chem Chem Phys; 2011 Jul; 13(28):12940-58. PubMed ID: 21687883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Properties of UN and UN
    de Melo GF; Vasiliu M; Liu G; Ciborowski S; Zhu Z; Blankenhorn M; Harris R; Martinez-Martinez C; Dipalo M; Peterson KA; Bowen KH; Dixon DA
    J Phys Chem A; 2022 Nov; 126(43):7944-7953. PubMed ID: 36269194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the structures and heats of formation of MO
    Lontchi E; Mason MM; Vasiliu M; Dixon DA
    Phys Chem Chem Phys; 2023 Mar; 25(12):8355-8368. PubMed ID: 36912479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of electronic states and spectroscopic properties of tellurium selenide molecule employing relativistic effective core potentials.
    Chattopadhyaya S; Nath A; Das KK
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():618-28. PubMed ID: 24509540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond dissociation energies of the diatomic late transition metal sulfides: RuS, OsS, CoS, RhS, IrS, and PtS.
    Sorensen JJ; Tieu E; Morse MD
    J Chem Phys; 2020 Jun; 152(24):244305. PubMed ID: 32610999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).
    Lau KC; Chang YC; Shi X; Ng CY
    J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the detection of the triatomic negative ion SPN
    Trabelsi T; Hochlaf M; Francisco JS
    J Chem Phys; 2018 Apr; 148(16):164305. PubMed ID: 29716237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond dissociation energies of diatomic transition metal selenides: ScSe, YSe, RuSe, OsSe, CoSe, RhSe, IrSe, and PtSe.
    Sorensen JJ; Tieu E; Morse MD
    J Chem Phys; 2020 Mar; 152(12):124305. PubMed ID: 32241137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bond dissociation energies of diatomic transition metal sulfides: ScS, YS, TiS, ZrS, HfS, NbS, and TaS.
    Sorensen JJ; Tieu E; Nielson C; Sevy A; Tomchak KH; Morse MD
    J Chem Phys; 2020 May; 152(19):194307. PubMed ID: 33687227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron affinities of uracil: microsolvation effects and polarizable continuum model.
    Melicherčík M; Pašteka LF; Neogrády P; Urban M
    J Phys Chem A; 2012 Mar; 116(9):2343-51. PubMed ID: 22299724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond Dissociation Energies in Heavy Element Chalcogen and Halogen Small Molecules.
    Vasiliu M; Peterson KA; Dixon DA
    J Phys Chem A; 2021 Mar; 125(9):1892-1902. PubMed ID: 33645983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic states of SnS and SnS+: a configuration interaction study.
    Giri D; Das KK
    J Phys Chem A; 2005 Aug; 109(32):7207-15. PubMed ID: 16834085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.