These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 3605346)

  • 1. Evidence for a high-affinity sodium-dependent D-glucose transport system in the kidney.
    Quamme GA; Freeman HJ
    Am J Physiol; 1987 Jul; 253(1 Pt 2):F151-7. PubMed ID: 3605346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membrane.
    Walker JJ; Yan TS; Quamme GA
    Am J Physiol; 1987 Feb; 252(2 Pt 2):F226-31. PubMed ID: 3812737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies.
    Turner RJ; Moran A
    Am J Physiol; 1982 Apr; 242(4):F406-14. PubMed ID: 6278960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-dependent D-glucose transport in brush-border membrane vesicles after massive distal small bowel resection in the rat.
    Kwan WC; Quamme GA; Freeman HJ
    Gastroenterology; 1987 Jun; 92(6):1987-93. PubMed ID: 3569772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of parathyroid hormone and dietary phosphate on phosphate transport in renal outer cortical and outer medullary brush-border membrane vesicles.
    Quamme GA
    Biochim Biophys Acta; 1990 May; 1024(1):122-30. PubMed ID: 2337610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gentamicin inhibits Na+-dependent D-glucose transport in rabbit kidney brush-border membrane vesicles.
    Horio M; Fukuhara Y; Orita Y; Nakanishi T; Nakahama H; Moriyama T; Kamada T
    Biochim Biophys Acta; 1986 Jun; 858(1):153-60. PubMed ID: 3707959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related changes in sodium-dependent glucose transport in rat small intestine.
    Freeman HJ; Quamme GA
    Am J Physiol; 1986 Aug; 251(2 Pt 1):G208-17. PubMed ID: 2426968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on Na(+)-dependent phosphate transport in renal outer cortical and outer medullary BBMV.
    Quamme GA
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F356-63. PubMed ID: 2155540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanine- and glucose-transport systems.
    Kragh-Hansen U; Røigaard-Petersen H; Jacobsen C; Sheikh MI
    Biochem J; 1984 May; 220(1):15-24. PubMed ID: 6743259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity.
    Turner RJ; Moran A
    J Membr Biol; 1982; 70(1):37-45. PubMed ID: 7186937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar uptake into brush border vesicles from dog kidney. II. Kinetics.
    Turner RJ; Silverman M
    Biochim Biophys Acta; 1978 Aug; 511(3):470-86. PubMed ID: 687625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar uptake into brush border vesicles from normal human kidney.
    Turner RJ; Silverman M
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2825-9. PubMed ID: 142986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative effects of gentamicin and netilmicin on Na(+)-dependent d-glucose transport in rabbit renal brush-border membrane vesicles.
    Moriyama T; Nakahama H; Fukuhara Y; Ueda N; Orita Y; Kamada T
    Toxicol In Vitro; 1991; 5(3):211-8. PubMed ID: 20732018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
    Kanai Y; Lee WS; You G; Brown D; Hediger MA
    J Clin Invest; 1994 Jan; 93(1):397-404. PubMed ID: 8282810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH gradient-stimulated phosphate transport in outer medullary brush-border membranes.
    Quamme GA; Walker JJ; Yan TS
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F639-48. PubMed ID: 2679145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [D-glucose reabsorption activity of fetal kidney (by using brush border membrane vesicles of proximal tubule)].
    Iioka H; Moriyama I; Itoh K; Hino K; Okamura Y; Itani Y; Kato Y; Ibaragi T; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Jul; 39(7):1037-41. PubMed ID: 3611877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-dependent D-glucose transport after proximal small intestinal resection in rat.
    Freeman HJ; Ellis ST; Johnston GA; Kwan WC; Quamme GA
    Am J Physiol; 1988 Sep; 255(3 Pt 1):G292-7. PubMed ID: 3421334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets.
    Cheng L; Liang CT; Sacktor B
    Am J Physiol; 1983 Aug; 245(2):F175-80. PubMed ID: 6881335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.