BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36053528)

  • 1. Progenitor Hierarchy of Chronic Myelomonocytic Leukemia Identifies Inflammatory Monocytic-Biased Trajectory Linked to Worse Outcomes.
    Ferrall-Fairbanks MC; Dhawan A; Johnson B; Newman H; Volpe V; Letson C; Ball M; Hunter AM; Balasis ME; Kruer T; Ben-Crentsil NA; Kroeger JL; Balderas R; Komrokji RS; Sallman DA; Zhang J; Bejar R; Altrock PM; Padron E
    Blood Cancer Discov; 2022 Nov; 3(6):536-553. PubMed ID: 36053528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional alterations of Lin-CD34+CD38+ cells in chronic myelomonocytic leukemia and on progression to acute leukemia.
    Sun Q; So CC; Yip SF; Wan TS; Ma SK; Chan LC
    Leuk Res; 2008 Sep; 32(9):1374-81. PubMed ID: 18372040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia.
    Padron E; Painter JS; Kunigal S; Mailloux AW; McGraw K; McDaniel JM; Kim E; Bebbington C; Baer M; Yarranton G; Lancet J; Komrokji RS; Abdel-Wahab O; List AF; Epling-Burnette PK
    Blood; 2013 Jun; 121(25):5068-77. PubMed ID: 23632888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficiency of β Common Receptor Moderately Attenuates the Progression of Myeloproliferative Neoplasm in NrasG12D/+ Mice.
    Zhang J; Ranheim EA; Du J; Liu Y; Wang J; Kong G; Zhang J
    J Biol Chem; 2015 Jul; 290(31):19093-103. PubMed ID: 26082490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic subtypes of leukaemic transformation in chronic myelomonocytic leukaemia.
    Montalban-Bravo G; Kanagal-Shamanna R; Li Z; Hammond D; Chien K; Rodriguez-Sevilla JJ; Sasaki K; Jabbour E; DiNardo C; Takahashi K; Short N; Issa GC; Pemmaraju N; Kadia T; Ravandi F; Daver N; Borthakur G; Loghavi S; Pierce S; Bueso-Ramos C; Kantarjian H; Garcia-Manero G
    Br J Haematol; 2023 Nov; 203(4):581-592. PubMed ID: 37608562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment advances for pediatric and adult onset neoplasms with monocytosis.
    McCullough KB; Kuhn AK; Patnaik MM
    Curr Hematol Malig Rep; 2021 Jun; 16(3):256-266. PubMed ID: 33728588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del(5q) myelodysplastic syndromes.
    Chesnais V; Arcangeli ML; Delette C; Rousseau A; Guermouche H; Lefevre C; Bondu S; Diop M; Cheok M; Chapuis N; Legros L; Raynaud S; Willems L; Bouscary D; Lauret E; Bernard OA; Kosmider O; Pflumio F; Fontenay M
    Blood; 2017 Jan; 129(4):484-496. PubMed ID: 27856460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia.
    Wang J; Liu Y; Li Z; Du J; Ryu MJ; Taylor PR; Fleming MD; Young KH; Pitot H; Zhang J
    Blood; 2010 Dec; 116(26):5991-6002. PubMed ID: 20921338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant.
    Ricci C; Fermo E; Corti S; Molteni M; Faricciotti A; Cortelezzi A; Lambertenghi Deliliers G; Beran M; Onida F
    Clin Cancer Res; 2010 Apr; 16(8):2246-56. PubMed ID: 20371679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia.
    Eisenwort G; Sadovnik I; Keller A; Ivanov D; Peter B; Berger D; Stefanzl G; Bauer K; Slavnitsch K; Greiner G; Gleixner KV; Sperr WR; Willmann M; Sill H; Bettelheim P; Geissler K; Deininger M; Rülicke T; Valent P
    Leukemia; 2021 Nov; 35(11):3176-3187. PubMed ID: 33785864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal myeloid progenitor cell subset-associated gene signatures for acute myeloid leukaemia subtyping with prognostic impact.
    Schönherz AA; Bødker JS; Schmitz A; Brøndum RF; Jakobsen LH; Roug AS; Severinsen MT; El-Galaly TC; Jensen P; Johnsen HE; Bøgsted M; Dybkær K
    PLoS One; 2020; 15(4):e0229593. PubMed ID: 32324791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NUP98-HBO1-fusion generates phenotypically and genetically relevant chronic myelomonocytic leukemia pathogenesis.
    Hayashi Y; Harada Y; Kagiyama Y; Nishikawa S; Ding Y; Imagawa J; Shingai N; Kato N; Kitaura J; Hokaiwado S; Maemoto Y; Ito A; Matsui H; Kitabayashi I; Iwama A; Komatsu N; Kitamura T; Harada H
    Blood Adv; 2019 Apr; 3(7):1047-1060. PubMed ID: 30944097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro expansion of CD34(+)CD38(-) cells under stimulation with hematopoietic growth factors on AGM-S3 cells in juvenile myelomonocytic leukemia.
    Sakashita K; Kato I; Daifu T; Saida S; Hiramatsu H; Nishinaka Y; Ebihara Y; Ma F; Matsuda K; Saito S; Hirabayashi K; Kurata T; Uyen LT; Nakazawa Y; Tsuji K; Heike T; Nakahata T; Koike K
    Leukemia; 2015 Mar; 29(3):606-14. PubMed ID: 25102944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34(+) cells of juvenile myelomonocytic leukemia.
    Nakazawa Y; Matsuda K; Kurata T; Sueki A; Tanaka M; Sakashita K; Imai C; Wilson MH; Koike K
    J Hematol Oncol; 2016 Mar; 9():27. PubMed ID: 26983639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of mutant HSC clones to immature and mature cells in MDS and CMML, and variations with AZA therapy.
    Schnegg-Kaufmann AS; Thoms JAI; Bhuyan GS; Hampton HR; Vaughan L; Rutherford K; Kakadia PM; Lee HM; Johansson EMV; Failes TW; Arndt GM; Koval J; Lindeman R; Warburton P; Rodriguez-Meira A; Mead AJ; Unnikrishnan A; Davidson S; Polizzotto MN; Hertzberg M; Papaemmanuil E; Bohlander SK; Faridani OR; Jolly CJ; Zanini F; Pimanda JE
    Blood; 2023 Mar; 141(11):1316-1321. PubMed ID: 36493342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic myelomonocytic leukaemia stem cell transcriptomes anticipate disease morphology and outcome.
    Wiseman DH; Baker SM; Dongre AV; Gurashi K; Storer JA; Somervaille TC; Batta K
    EBioMedicine; 2020 Aug; 58():102904. PubMed ID: 32763828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic Signatures of Hypomethylating Agent Failure in Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia.
    Darbaniyan F; Zheng H; Kanagal-Shamanna R; Lockyer P; Montalban-Bravo G; Estecio M; Lu Y; Soltysiak KA; Chien KS; Yang H; Sasaki K; Class C; Ganan-Gomez I; Do KA; Garcia-Manero G; Wei Y
    Exp Hematol; 2022 Nov; 115():44-53. PubMed ID: 36150563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LILRB4 expression in chronic myelomonocytic leukemia and myelodysplastic syndrome based on response to hypomethylating agents.
    Chien KS; Class CA; Montalban-Bravo G; Wei Y; Sasaki K; Naqvi K; Ganan-Gomez I; Yang H; Soltysiak KA; Kanagal-Shamanna R; Do KA; Kantarjian HM; Garcia-Manero G
    Leuk Lymphoma; 2020 Jun; 61(6):1493-1499. PubMed ID: 32036728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting MCL1-driven anti-apoptotic pathways to overcome hypomethylating agent resistance in
    Montalban-Bravo G; Ma F; Thongon N; Yang H; Gomez IG; Rodriguez-Sevilla JJ; Adema V; Wildeman B; Lockyer P; Kim YJ; Tanaka T; Darbaniyan F; Pancholy S; Zhang G; Al-Atrash G; Dwyer K; Takahashi K; Garcia-Manero G; Kantarjian H; Colla S
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066354
    [No Abstract]   [Full Text] [Related]  

  • 20. Micro-RNA-125a mediates the effects of hypomethylating agents in chronic myelomonocytic leukemia.
    Berg JL; Perfler B; Hatzl S; Mayer MC; Wurm S; Uhl B; Reinisch A; Klymiuk I; Tierling S; Pregartner G; Bachmaier G; Berghold A; Geissler K; Pichler M; Hoefler G; Strobl H; Wölfler A; Sill H; Zebisch A
    Clin Epigenetics; 2021 Jan; 13(1):1. PubMed ID: 33407852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.