These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3605377)

  • 1. Significance of vessel size and type in vascular heat transfer.
    Lemons DE; Chien S; Crawshaw LI; Weinbaum S; Jiji LM
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R128-35. PubMed ID: 3605377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental measurements of the temperature variation along artery-vein pairs from 200 to 1000 microns diameter in rat hind limb.
    He Q; Zhu L; Lemons DE; Weinbaum S
    J Biomech Eng; 2002 Dec; 124(6):656-61. PubMed ID: 12596632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network.
    Shrivastava D; Roemer RB
    J Biomech Eng; 2006 Apr; 128(2):210-6. PubMed ID: 16524332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat transport by countercurrent blood vessels in the presence of an arbitrary temperature gradient.
    Baish JW
    J Biomech Eng; 1990 May; 112(2):207-11. PubMed ID: 2345452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat transfer to blood vessels.
    Chato JC
    J Biomech Eng; 1980 May; 102(2):110-8. PubMed ID: 7412233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat transport mechanisms in vascular tissues: a model comparison.
    Baish JW; Ayyaswamy PS; Foster KR
    J Biomech Eng; 1986 Nov; 108(4):324-31. PubMed ID: 3795877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.
    Paul A; Narasimhan A; Kahlen FJ; Das SK
    J Therm Biol; 2014 Apr; 41():77-87. PubMed ID: 24679976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytical solution countercurrent heat transfer between parallel vessels with a linear axial temperature gradient.
    Wissler EH
    J Biomech Eng; 1988 Aug; 110(3):254-6. PubMed ID: 3172747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular thermal equilibration in rat cremaster muscle.
    Zhu L; Lemons DE; Weinbaum S
    Ann Biomed Eng; 1996; 24(1):109-123. PubMed ID: 8669709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement in the effective thermal conductivity in rat spinotrapezius due to vasoregulation.
    Song J; Xu LX; Lemons DE; Weinbaum S
    J Biomech Eng; 1997 Nov; 119(4):461-8. PubMed ID: 9407286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large blood vessel cooling in heated tissues: a numerical study.
    Kolios MC; Sherar MD; Hunt JW
    Phys Med Biol; 1995 Apr; 40(4):477-94. PubMed ID: 7610110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies.
    Consiglieri L; dos Santos I; Haemmerich D
    Phys Med Biol; 2003 Dec; 48(24):4125-34. PubMed ID: 14727756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions.
    Charny CK; Weinbaum S; Levin RL
    J Biomech Eng; 1990 Feb; 112(1):80-7. PubMed ID: 2308308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature.
    Weinbaum S; Jiji LM
    J Biomech Eng; 1985 May; 107(2):131-9. PubMed ID: 3999709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the thermal effect of blood flow in a branching countercurrent network using a three-dimensional vascular model.
    Brinck H; Werner J
    J Biomech Eng; 1994 Aug; 116(3):324-30. PubMed ID: 7799635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of the large blood vessel influence on the local tissue temperature decay after pulse heating.
    Xu LX; Chen MM; Holmes KR; Arkin H
    J Biomech Eng; 1993 May; 115(2):175-9. PubMed ID: 8326723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.
    Zhu L; Xu LX; He Q; Weinbaum S
    J Biomech Eng; 2002 Feb; 124(1):121-32. PubMed ID: 11871598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A description of discrete vessel segments in thermal modelling of tissues.
    Kotte A; van Leeuwen G; de Bree J; van der Koijk J; Crezee H; Lagendijk J
    Phys Med Biol; 1996 May; 41(5):865-84. PubMed ID: 8735254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.
    Porter WR; Witmer LM
    PLoS One; 2015; 10(10):e0139215. PubMed ID: 26466378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.