These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36053944)

  • 1. Antifungal mechanism of isothiocyanates against Cochliobolus heterostrophus.
    Yu H; Jia W; Zhao M; Li L; Liu J; Chen J; Pan H; Zhang X
    Pest Manag Sci; 2022 Dec; 78(12):5133-5141. PubMed ID: 36053944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crucial Roles of the High-Osmolarity Glycerol Pathway in the Antifungal Activity of Isothiocyanates against
    Jia W; Yu H; Fan J; Zhang J; Su L; Li D; Pan H; Zhang X
    J Agric Food Chem; 2023 Oct; 71(42):15466-15475. PubMed ID: 37877171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The histidine kinases regulate allyl-isothiocyanate sensitivity in Cochliobolus heterostrophus.
    Jia W; Yu H; Fan J; Zhang J; Pan H; Zhang X
    Pest Manag Sci; 2024 Feb; 80(2):463-472. PubMed ID: 37743431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum.
    Kurt S; Güneş U; Soylu EM
    Pest Manag Sci; 2011 Jul; 67(7):869-75. PubMed ID: 21370393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration- and time-dependent effects of isothiocyanates produced from Brassicaceae shoot tissues on the pea root rot pathogen Aphanomyces euteiches.
    Hossain S; Bergkvist G; Berglund K; Glinwood R; Kabouw P; Mårtensson A; Persson P
    J Agric Food Chem; 2014 May; 62(20):4584-91. PubMed ID: 24824814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.
    Müller C; van Loon J; Ruschioni S; De Nicola GR; Olsen CE; Iori R; Agerbirk N
    Phytochemistry; 2015 Oct; 118():139-48. PubMed ID: 26318325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in
    Yu H; Su L; Jia W; Jia M; Pan H; Zhang X
    J Agric Food Chem; 2024 Feb; 72(8):3926-3936. PubMed ID: 38365616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between Chemical Structure and Antimicrobial Activities of Isothiocyanates from Cruciferous Vegetables against Oral Pathogens.
    Ko MO; Kim MB; Lim SB
    J Microbiol Biotechnol; 2016 Dec; 26(12):2036-2042. PubMed ID: 27586534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucosinolate-Derived Isothiocyanates Inhibit Arabidopsis Growth and the Potency Depends on Their Side Chain Structure.
    Urbancsok J; Bones AM; Kissen R
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29117115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives.
    Ngo SNT; Williams DB
    Anticancer Agents Med Chem; 2021; 21(11):1413-1430. PubMed ID: 32972351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Analysis of Glucosinolates and Isothiocyanates by Reversed-Phase Ultra-High-Performance Liquid Chromatography-Electron Spray Ionization-Tandem Mass Spectrometry.
    Andini S; Araya-Cloutier C; Sanders M; Vincken JP
    J Agric Food Chem; 2020 Mar; 68(10):3121-3131. PubMed ID: 32053364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Sorting Nexin Genes
    Yu H; Jia W; Li Z; Gao C; Pan H; Zhang X
    J Fungi (Basel); 2022 Aug; 8(8):. PubMed ID: 36012843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural and Synthetic Isothiocyanates Possess Anticancer Potential Against Liver and Prostate Cancer
    Crowley E; Rowan NJ; Faller D; Friel AM
    Anticancer Res; 2019 Jul; 39(7):3469-3485. PubMed ID: 31262871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens.
    Kurepina N; Kreiswirth BN; Mustaev A
    J Appl Microbiol; 2013 Oct; 115(4):943-54. PubMed ID: 23789822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 7-Methylsulfinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes.
    Rose P; Faulkner K; Williamson G; Mithen R
    Carcinogenesis; 2000 Nov; 21(11):1983-8. PubMed ID: 11062158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications.
    Plaszkó T; Szűcs Z; Vasas G; Gonda S
    J Fungi (Basel); 2021 Jul; 7(7):. PubMed ID: 34356918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of wasabi isothiocyanates on chemical mediator release in RBL-2H3 rat basophilic leukemia cells.
    Yamada-Kato T; Nagai M; Ohnishi M; Yoshida K
    J Nutr Sci Vitaminol (Tokyo); 2012; 58(4):303-7. PubMed ID: 23132316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation.
    Hu P; Hollister EB; Somenahally AC; Hons FM; Gentry TJ
    Front Microbiol; 2014; 5():729. PubMed ID: 25709600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-fibrotic potential of a
    Mohammed ED; El-Naga RN; Lotfy RA; Al-Gendy AA; El-Demerdash E
    Pharmazie; 2017 Oct; 72(10):614-624. PubMed ID: 29441888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural influence of isothiocyanates on expression of cytochrome P450, phase II enzymes, and activation of Nrf2 in primary rat hepatocytes.
    La Marca M; Beffy P; Della Croce C; Gervasi PG; Iori R; Puccinelli E; Longo V
    Food Chem Toxicol; 2012 Aug; 50(8):2822-30. PubMed ID: 22664424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.