BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36053972)

  • 1. Degradation kinetics of rutin encapsulated in oil-in-water emulsions: impact of particle size.
    Fu Y; McClements DJ; Luo S; Ye J; Liu C
    J Sci Food Agric; 2023 Jan; 103(2):770-778. PubMed ID: 36053972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Emulsion and Nanoemulsion Delivery Systems: The Chemical Stability of Curcumin Decreases as Oil Droplet Size Decreases.
    Kharat M; Aberg J; Dai T; McClements DJ
    J Agric Food Chem; 2020 Aug; 68(34):9205-9212. PubMed ID: 32786867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers.
    Luo Z; Murray BS; Ross AL; Povey MJ; Morgan MR; Day AJ
    Colloids Surf B Biointerfaces; 2012 Apr; 92():84-90. PubMed ID: 22197223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and oxidative stability of oil in water emulsions as affected by rutin and homogenization procedure.
    Atarés L; Marshall LJ; Akhtar M; Murray BS
    Food Chem; 2012 Oct; 134(3):1418-24. PubMed ID: 25005961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.
    Zúñiga RN; Skurtys O; Osorio F; Aguilera JM; Pedreschi F
    Carbohydr Polym; 2012 Oct; 90(2):1147-58. PubMed ID: 22840052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle-stabilizing effects of flavonoids at the oil-water interface.
    Luo Z; Murray BS; Yusoff A; Morgan MR; Povey MJ; Day AJ
    J Agric Food Chem; 2011 Mar; 59(6):2636-45. PubMed ID: 21329397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of vitamin D delivery system based on pine nut oil Pickering emulsion: effect of phenols.
    Zhao X; Yang X; Bao Y; Guo Y; Luo J; Jiang S; Zhang W
    J Sci Food Agric; 2023 Jun; 103(8):4034-4046. PubMed ID: 36453713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates.
    Saari H; Wahlgren M; Rayner M; Sjöö M; Matos M
    PLoS One; 2019; 14(2):e0210690. PubMed ID: 30726246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of Vitamin D
    Mitbumrung W; Suphantharika M; McClements DJ; Winuprasith T
    J Food Sci; 2019 Nov; 84(11):3213-3221. PubMed ID: 31589344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of oil-in-water emulsions with eggplant flesh pulp (Solanum melongena L.) emulsifier: Effects of storage time, pH, ionic strength, and temperature.
    Zhu Y; Peng Z; Wu J; Zhang Y
    J Food Sci; 2022 Mar; 87(3):1119-1133. PubMed ID: 35067930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials.
    Terjung N; Löffler M; Gibis M; Hinrichs J; Weiss J
    Food Funct; 2012 Mar; 3(3):290-301. PubMed ID: 22183117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets.
    Zhang R; Zhang Z; Zou L; Xiao H; Zhang G; Decker EA; McClements DJ
    Food Funct; 2016 Jan; 7(1):93-103. PubMed ID: 26583923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions.
    Parthasarathi S; Muthukumar SP; Anandharamakrishnan C
    Food Funct; 2016 May; 7(5):2294-302. PubMed ID: 27101870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Flow Cytometry As Novel Technology in Studying the Effect of Droplet Size on Lipid Oxidation in Oil-in-Water Emulsions.
    Li P; McClements DJ; Decker EA
    J Agric Food Chem; 2020 Jan; 68(2):567-573. PubMed ID: 31860290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term stability of crystal-stabilized water-in-oil emulsions.
    Ghosh S; Pradhan M; Patel T; Haj-Shafiei S; Rousseau D
    J Colloid Interface Sci; 2015 Dec; 460():247-57. PubMed ID: 26343977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin).
    Luo X; Zhou Y; Bai L; Liu F; Zhang R; Zhang Z; Zheng B; Deng Y; McClements DJ
    Food Res Int; 2017 Jun; 96():103-112. PubMed ID: 28528089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel fiber-optic photometer for in situ stability assessment of concentrated oil-in-water emulsions.
    Oliczewski S; Daniels R
    AAPS PharmSciTech; 2007 Aug; 8(3):E70. PubMed ID: 17915820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions.
    Liu F; Tang CH
    J Agric Food Chem; 2013 Sep; 61(37):8888-98. PubMed ID: 23977961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emulsion-based control of flavor release profiles: Impact of oil droplet characteristics on garlic aroma release during simulated cooking.
    Doi T; Wang M; McClements DJ
    Food Res Int; 2019 Feb; 116():1-11. PubMed ID: 30716881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.
    Chen XW; Wang JM; Yang XQ; Qi JR; Hou JJ
    J Food Sci; 2016 Sep; 81(9):C2149-57. PubMed ID: 27467966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.