These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36053974)

  • 1. Sensitivity analyses for the principal ignorability assumption using multiple imputation.
    Wang C; Zhang Y; Mealli F; Bornkamp B
    Pharm Stat; 2023 Jan; 22(1):64-78. PubMed ID: 36053974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principal stratum strategy: Potential role in drug development.
    Bornkamp B; Rufibach K; Lin J; Liu Y; Mehrotra DV; Roychoudhury S; Schmidli H; Shentu Y; Wolbers M
    Pharm Stat; 2021 Jul; 20(4):737-751. PubMed ID: 33624407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of treatment effects in short-term depression studies. An evaluation based on the ICH E9(R1) estimands framework.
    Mitroiu M; Teerenstra S; Oude Rengerink K; Pétavy F; Roes KCB
    Pharm Stat; 2022 Sep; 21(5):1037-1057. PubMed ID: 35678545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handling intercurrent events and missing data in non-inferiority trials using the estimand framework: A tuberculosis case study.
    Rehal S; Cro S; Phillips PP; Fielding K; Carpenter JR
    Clin Trials; 2023 Oct; 20(5):497-506. PubMed ID: 37277978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the use of propensity scores in principal causal effect estimation.
    Jo B; Stuart EA
    Stat Med; 2009 Oct; 28(23):2857-75. PubMed ID: 19610131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity analysis for principal ignorability violation in estimating complier and noncomplier average causal effects.
    Nguyen TQ; Stuart EA; Scharfstein DO; Ogburn EL
    Stat Med; 2024 Aug; 43(19):3664-3688. PubMed ID: 38890728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the treatment effect for adherers using multiple imputation.
    Luo J; Ruberg SJ; Qu Y
    Pharm Stat; 2022 May; 21(3):525-534. PubMed ID: 34927339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impute the missing data using retrieved dropouts.
    Wang S; Hu H
    BMC Med Res Methodol; 2022 Mar; 22(1):82. PubMed ID: 35350976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analyses in longitudinal clinical trials via distributional imputation.
    Liu S; Yang S; Zhang Y; Liu GF
    Stat Methods Med Res; 2023 Jan; 32(1):181-194. PubMed ID: 36341772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of estimand framework in ICH E9 (R1) to safety evaluation.
    Wang X; Yang P; Yuan SS; Wang WWB
    J Biopharm Stat; 2023 Jul; 33(4):476-487. PubMed ID: 36951445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A causal modelling framework for reference-based imputation and tipping point analysis in clinical trials with quantitative outcome.
    White IR; Joseph R; Best N
    J Biopharm Stat; 2020 Mar; 30(2):334-350. PubMed ID: 31718423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using modified intention-to-treat as a principal stratum estimator for failure to initiate treatment.
    Kahan BC; White IR; Edwards M; Harhay MO
    Clin Trials; 2023 Jun; 20(3):269-275. PubMed ID: 36916466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian inference for a principal stratum estimand to assess the treatment effect in a subgroup characterized by postrandomization event occurrence.
    Magnusson BP; Schmidli H; Rouyrre N; Scharfstein DO
    Stat Med; 2019 Oct; 38(23):4761-4771. PubMed ID: 31386219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating estimands into clinical trial statistical analysis plans.
    Kang M; Kendall MA; Ribaudo H; Tierney C; Zheng L; Smeaton L; Lindsey JC
    Clin Trials; 2022 Jun; 19(3):285-291. PubMed ID: 35257600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiply robust estimators in longitudinal studies with missing data under control-based imputation.
    Liu S; Yang S; Zhang Y; Liu GF
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38393335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of causal effects in clinical endpoint bioequivalence studies in the presence of intercurrent events: noncompliance and missing data.
    Lou Y; Jones MP; Sun W
    J Biopharm Stat; 2019; 29(1):151-173. PubMed ID: 29995564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting Instrumental Variable methods for causal inference to the Estimand Framework.
    Bowden J; Bornkamp B; Glimm E; Bretz F
    Stat Med; 2021 Nov; 40(25):5605-5627. PubMed ID: 34288021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The attributable estimand: A new approach to account for intercurrent events.
    Darken P; Nyberg J; Ballal S; Wright D
    Pharm Stat; 2020 Sep; 19(5):626-635. PubMed ID: 32198954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiply robust estimation of principal causal effects with noncompliance and survival outcomes.
    Cheng C; Guo Y; Liu B; Wruck L; Li F; Li F
    Clin Trials; 2024 May; ():17407745241251773. PubMed ID: 38813813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the ratio of means as a causal estimand in clinical endpoint bioequivalence studies in the presence of intercurrent events.
    Lou Y; Jones MP; Sun W
    Stat Med; 2019 Nov; 38(27):5214-5235. PubMed ID: 31621943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.