These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36053984)
1. Thermogelling hydrogel charge and lower critical solution temperature influence cellular infiltration and tissue integration in an ex vivo cartilage explant model. Pearce HA; Swain JWR; Victor LH; Hogan KJ; Jiang EY; Bedell ML; Navara AM; Farsheed A; Kim YS; Guo JL; Hartgerink JD; Grande-Allen KJ; Mikos AG J Biomed Mater Res A; 2023 Jan; 111(1):15-34. PubMed ID: 36053984 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the physicochemical effects of conjugating peptides into thermogelling hydrogels for regenerative biomaterials applications. Pearce HA; Jiang EY; Swain JWR; Navara AM; Guo JL; Kim YS; Woehr A; Hartgerink JD; Mikos AG Regen Biomater; 2021 Dec; 8(6):rbab073. PubMed ID: 34934509 [TBL] [Abstract][Full Text] [Related]
3. Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering. Guo JL; Kim YS; Xie VY; Smith BT; Watson E; Lam J; Pearce HA; Engel PS; Mikos AG Sci Adv; 2019 Jun; 5(6):eaaw7396. PubMed ID: 31183408 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. Vo TN; Ekenseair AK; Spicer PP; Watson BM; Tzouanas SN; Roh TT; Mikos AG J Control Release; 2015 May; 205():25-34. PubMed ID: 25483428 [TBL] [Abstract][Full Text] [Related]
5. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Guo JL; Kim YS; Koons GL; Lam J; Navara AM; Barrios S; Xie VY; Watson E; Smith BT; Pearce HA; Orchard EA; van den Beucken JJJP; Jansen JA; Wong ME; Mikos AG Acta Biomater; 2021 Jul; 128():120-129. PubMed ID: 33930575 [TBL] [Abstract][Full Text] [Related]
6. Click functionalized, tissue-specific hydrogels for osteochondral tissue engineering. Guo JL; Li A; Kim YS; Xie VY; Smith BT; Watson E; Bao G; Mikos AG J Biomed Mater Res A; 2020 Mar; 108(3):684-693. PubMed ID: 31755226 [TBL] [Abstract][Full Text] [Related]
7. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Neumann AJ; Quinn T; Bryant SJ Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026 [TBL] [Abstract][Full Text] [Related]
9. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. Kim S; Chung EH; Gilbert M; Healy KE J Biomed Mater Res A; 2005 Oct; 75(1):73-88. PubMed ID: 16049978 [TBL] [Abstract][Full Text] [Related]
10. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Martens PJ; Bryant SJ; Anseth KS Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723 [TBL] [Abstract][Full Text] [Related]
11. Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Jeong B; Lee KM; Gutowska A; An YH Biomacromolecules; 2002; 3(4):865-8. PubMed ID: 12099835 [TBL] [Abstract][Full Text] [Related]
12. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3. Schneider MC; Chu S; Randolph MA; Bryant SJ Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256 [TBL] [Abstract][Full Text] [Related]