These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36054525)

  • 41. Preliminary Study of Resistance Mechanism of
    Wang K; Zhang H; Zhu W; Peng J; Li X; Wang Y; Qi Z
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Population Genetics and Fungicide Resistance of
    DeLong JA; Saito S; Xiao CL; Naegele RP
    Phytopathology; 2020 Mar; 110(3):694-702. PubMed ID: 32017671
    [No Abstract]   [Full Text] [Related]  

  • 43. Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields.
    Amiri A; Zuniga AI; Peres NA
    Plant Dis; 2018 Nov; 102(11):2142-2148. PubMed ID: 30169135
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry.
    Grabke A; Fernández-Ortuño D; Amiri A; Li X; Peres NA; Smith P; Schnabel G
    Phytopathology; 2014 Apr; 104(4):396-402. PubMed ID: 24156554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fungal adaptation to contemporary fungicide applications: the case of Botrytis cinerea populations from Champagne vineyards (France).
    Walker AS; Ravigne V; Rieux A; Ali S; Carpentier F; Fournier E
    Mol Ecol; 2017 Apr; 26(7):1919-1935. PubMed ID: 28231406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Propamidine decreas mitochondrial complex III activity of Botrytis cinerea.
    Wu F; Jin W; Feng J; Chen A; Ma Z; Zhang X
    BMB Rep; 2010 Sep; 43(9):614-21. PubMed ID: 20846494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sources of Primary Inoculum of Botrytis cinerea and Their Impact on Fungicide Resistance Development in Commercial Strawberry Fields.
    Oliveira MS; Amiri A; Zuniga AI; Peres NA
    Plant Dis; 2017 Oct; 101(10):1761-1768. PubMed ID: 30676923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amino Acid Polymorphism in Succinate Dehydrogenase Subunit C Involved in Biological Fitness of
    Shao W; Sun J; Zhang X; Chen C
    Mol Plant Microbe Interact; 2020 Apr; 33(4):580-589. PubMed ID: 31922928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular and Biochemical Characterization of Laboratory and Field Mutants of Botrytis cinerea Resistant to Fludioxonil.
    Ren W; Shao W; Han X; Zhou M; Chen C
    Plant Dis; 2016 Jul; 100(7):1414-1423. PubMed ID: 30686204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological Characteristics and Molecular Mechanism of Fludioxonil Resistance in
    Zhou F; Hu HY; Song YL; Gao YQ; Liu QL; Song PW; Chen EY; Yu YA; Li DX; Li CW
    Plant Dis; 2020 Apr; 104(4):1041-1047. PubMed ID: 31999220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Procymidone Application Contributes to Multidrug Resistance of
    Wu Z; Yu C; Bi Q; Zhang J; Hao J; Liu P; Liu X
    J Fungi (Basel); 2024 Mar; 10(4):. PubMed ID: 38667931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fungicide Resistance Profiles of
    Alzohairy SA; Gillett J; Saito S; Naegele RN; Xiao CL; Miles TD
    Plant Dis; 2021 Feb; 105(2):285-294. PubMed ID: 32762329
    [No Abstract]   [Full Text] [Related]  

  • 53. Fungicide resistance frequencies of Botrytis cinerea greenhouse isolates and molecular detection of a novel SDHI resistance mutation.
    Malandrakis AA; Krasagakis N; Kavroulakis N; Ilias A; Tsagkarakou A; Vontas J; Markakis E
    Pestic Biochem Physiol; 2022 May; 183():105058. PubMed ID: 35430062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fitness and Competitive Ability of Botrytis cinerea Isolates with Resistance to Multiple Chemical Classes of Fungicides.
    Chen SN; Luo CX; Hu MJ; Schnabel G
    Phytopathology; 2016 Sep; 106(9):997-1005. PubMed ID: 27161219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carboxylesterase and Cytochrome P450 Confer Metabolic Resistance Simultaneously to Azoxystrobin and Some Other Fungicides in
    Wang T; Shi X; Wu Z; Zhang J; Hao J; Liu P; Liu X
    J Agric Food Chem; 2024 May; 72(17):9680-9690. PubMed ID: 38634420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterisation of heteroplasmic status at codon 143 of the Botrytis cinerea cytochrome b gene in a semi-quantitative AS-PCR assay.
    Hashimoto M; Aoki Y; Saito S; Suzuki S
    Pest Manag Sci; 2015 Mar; 71(3):467-77. PubMed ID: 25067839
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea.
    Hu XR; Dai DJ; Wang HD; Zhang CQ
    Sci Rep; 2017 Oct; 7(1):13861. PubMed ID: 29066786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a selective medium for the determination of the spore concentrations of Botrytis cinerea in the air.
    Gielen S; Aerts R; Seels B
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):685-93. PubMed ID: 15151304
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea.
    Kretschmer M; Leroch M; Mosbach A; Walker AS; Fillinger S; Mernke D; Schoonbeek HJ; Pradier JM; Leroux P; De Waard MA; Hahn M
    PLoS Pathog; 2009 Dec; 5(12):e1000696. PubMed ID: 20019793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.