BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36054549)

  • 1. An experimental test of the growth rate hypothesis as a predictive framework for microevolutionary adaptation.
    Lemmen KD; Zhou L; Papakostas S; Declerck SAJ
    Ecology; 2023 Jan; 104(1):e3853. PubMed ID: 36054549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid adaptation of herbivore consumers to nutrient limitation: eco-evolutionary feedbacks to population demography and resource control.
    Declerck SA; Malo AR; Diehl S; Waasdorp D; Lemmen KD; Proios K; Papakostas S
    Ecol Lett; 2015 Jun; 18(6):553-62. PubMed ID: 25913306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and Indirect Effects of Resource P-Limitation Differentially Impact Population Growth, Life History and Body Elemental Composition of a Zooplankton Consumer.
    Zhou L; Lemmen KD; Zhang W; Declerck SAJ
    Front Microbiol; 2018; 9():172. PubMed ID: 29479344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher rates of sex evolve during adaptation to more complex environments.
    Luijckx P; Ho EK; Gasim M; Chen S; Stanic A; Yanchus C; Kim YS; Agrawal AF
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):534-539. PubMed ID: 28053226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Herbivore consumers face different challenges along opposite sides of the stoichiometric knife-edge.
    Zhou L; Declerck SAJ
    Ecol Lett; 2019 Dec; 22(12):2018-2027. PubMed ID: 31512359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genome of the freshwater monogonont rotifer Brachionus calyciflorus.
    Kim HS; Lee BY; Han J; Jeong CB; Hwang DS; Lee MC; Kang HM; Kim DH; Kim HJ; Papakostas S; Declerck SAJ; Choi IY; Hagiwara A; Park HG; Lee JS
    Mol Ecol Resour; 2018 May; 18(3):646-655. PubMed ID: 29451365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the growth rate hypothesis: Towards a holistic stoichiometric understanding of growth.
    Isanta-Navarro J; Prater C; Peoples LM; Loladze I; Phan T; Jeyasingh PD; Church MJ; Kuang Y; Elser JJ
    Ecol Lett; 2022 Oct; 25(10):2324-2339. PubMed ID: 36089849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter- and intraspecific differences in rotifer fatty acid composition during acclimation to low-quality food.
    Schälicke S; Heim S; Martin-Creuzburg D; Wacker A
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1804):20190644. PubMed ID: 32536305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto.
    Paraskevopoulou S; Dennis AB; Weithoff G; Hartmann S; Tiedemann R
    PLoS One; 2019; 14(9):e0223134. PubMed ID: 31568501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial genomes of the freshwater monogonont rotifer
    Kiemel K; De Cahsan B; Paraskevopoulou S; Weithoff G; Tiedemann R
    Mitochondrial DNA B Resour; 2022; 7(4):646-648. PubMed ID: 35478860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological genomics of adaptation to unpredictability in experimental rotifer populations.
    Tarazona E; Hahn C; Franch-Gras L; García-Roger EM; Carmona MJ; Gómez A
    Sci Rep; 2019 Dec; 9(1):19646. PubMed ID: 31873145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spatial patterns of genetic differentiation in Brachionus calyciflorus species complex].
    Xiang XL; Xi YL; Wen XL; Zhang JY; Ma Q
    Dongwuxue Yanjiu; 2010 Jun; 31(3):205-20. PubMed ID: 20672408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size evolution in microorganisms masks trade-offs predicted by the growth rate hypothesis.
    Gounand I; Daufresne T; Gravel D; Bouvier C; Bouvier T; Combe M; Gougat-Barbera C; Poly F; Torres-Barceló C; Mouquet N
    Proc Biol Sci; 2016 Dec; 283(1845):. PubMed ID: 28003453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal Effects Via Resting eggs in Predator Defense of the Rotifer Brachionus calyciflorus.
    Li X; Niu C
    Zoolog Sci; 2018 Feb; 35(1):49-56. PubMed ID: 29417899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection on life-history traits and genetic population divergence in rotifers.
    Campillo S; García-Roger EM; Carmona MJ; Gómez A; Serra M
    J Evol Biol; 2009 Dec; 22(12):2542-53. PubMed ID: 19878499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher rates of sex evolve in spatially heterogeneous environments.
    Becks L; Agrawal AF
    Nature; 2010 Nov; 468(7320):89-92. PubMed ID: 20944628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic signatures of local adaptation to the degree of environmental predictability in rotifers.
    Franch-Gras L; Hahn C; García-Roger EM; Carmona MJ; Serra M; Gómez A
    Sci Rep; 2018 Oct; 8(1):16051. PubMed ID: 30375419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of physiological activities to estimate the population growth of rotifer (Brachionus calyciflorus) under the stress of toxic Microcystis and nitrite.
    Liang Y; Zhou Y; Wang Y; Liu R; Qi J; Lin Y; Zhang T; Jiang Q
    Chemosphere; 2021 Dec; 285():131419. PubMed ID: 34246096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae).
    Sarma SS; Larios Jurado PS; Nandini S
    Rev Biol Trop; 2001 Mar; 49(1):77-84. PubMed ID: 11795172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid adaptation of Brachionus dorcas (Rotifera) to tetracycline antibiotic stress.
    Zhu H; Huang ZY; Jiang S; Pan L; Xi YL
    Aquat Toxicol; 2022 Apr; 245():106126. PubMed ID: 35228124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.