These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36054593)

  • 21. Ancient Mitogenomes Reveal the Evolutionary History and Biogeography of Sloths.
    Delsuc F; Kuch M; Gibb GC; Karpinski E; Hackenberger D; Szpak P; Martínez JG; Mead JI; McDonald HG; MacPhee RDE; Billet G; Hautier L; Poinar HN
    Curr Biol; 2019 Jun; 29(12):2031-2042.e6. PubMed ID: 31178321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Afrotheria.
    Springer MS
    Curr Biol; 2022 Mar; 32(5):R205-R210. PubMed ID: 35290765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fine structure of the placental labyrinth in the sloth, Bradypus tridactylus.
    King BF; Pinheiro PB; Hunter RL
    Anat Rec; 1982 Jan; 202(1):15-22. PubMed ID: 7059018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ganglion cell size and distribution in the retina of the two-toed sloth (Choloepus didactylus L.).
    Andrade-da-Costa BL; Pessoa VF; Bousfield JD; Clarke RJ
    Braz J Med Biol Res; 1989; 22(2):233-6. PubMed ID: 2790292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative anatomy and histology of xenarthran osteoderms.
    Hill RV
    J Morphol; 2006 Dec; 267(12):1441-60. PubMed ID: 17103396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of sloths and anteaters as Leishmania spp. reservoirs: a review and a newly described natural infection of Leishmania mexicana in the northern anteater.
    Muñoz-García CI; Sánchez-Montes S; Villanueva-García C; Romero-Callejas E; Díaz-López HM; Gordillo-Chávez EJ; Martínez-Carrasco C; Berriatua E; Rendón-Franco E
    Parasitol Res; 2019 Apr; 118(4):1095-1101. PubMed ID: 30770980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogeny, Macroevolutionary Trends and Historical Biogeography of Sloths: Insights From a Bayesian Morphological Clock Analysis.
    Varela L; Tambusso PS; McDonald HG; Fariña RA
    Syst Biol; 2019 Mar; 68(2):204-218. PubMed ID: 30239971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting.
    Delsuc F; Scally M; Madsen O; Stanhope MJ; de Jong WW; Catzeflis FM; Springer MS; Douzery EJ
    Mol Biol Evol; 2002 Oct; 19(10):1656-71. PubMed ID: 12270893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two-dimensional geometric Morphometrics study of the Humerus.
    de Oliveira AM; Santos CMD
    J Morphol; 2018 Oct; 279(10):1455-1467. PubMed ID: 30105869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths).
    Möller-Krull M; Delsuc F; Churakov G; Marker C; Superina M; Brosius J; Douzery EJ; Schmitz J
    Mol Biol Evol; 2007 Nov; 24(11):2573-82. PubMed ID: 17884827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscular reconstruction and functional morphology of the forelimb of early Miocene sloths (Xenarthra, Folivora) of Patagonia.
    Toledo N; Bargo MS; Vizcaíno SF
    Anat Rec (Hoboken); 2013 Feb; 296(2):305-25. PubMed ID: 23193102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A suspensory way of life: Integrating locomotion, postures, limb movements, and forces in two-toed sloths Choloepus didactylus (Megalonychidae, Folivora, Pilosa).
    Granatosky MC; Karantanis NE; Rychlik L; Youlatos D
    J Exp Zool A Ecol Integr Physiol; 2018 Dec; 329(10):570-588. PubMed ID: 30129260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The complete mitochondrial genome of the Hoffmann's two-toed sloth (Choloepus hoffmanni).
    Song X; Chen L; Chen X; Jia H
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3661-2. PubMed ID: 26404730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of bite force in the formation of orthodentine microwear in tree sloths (Mammalia: Xenarthra: Folivora): Implications for feeding ecology.
    McAfee RK; Green JL
    Arch Oral Biol; 2015 Jan; 60(1):181-92. PubMed ID: 25455133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feeding Ecology in Oligocene Mylodontoid Sloths (Mammalia, Xenarthra) as Revealed by Orthodentine Microwear Analysis.
    Kalthoff DC; Green JL
    J Mamm Evol; 2018; 25(4):551-564. PubMed ID: 30443148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra.
    Emerling CA; Springer MS
    Proc Biol Sci; 2015 Feb; 282(1800):20142192. PubMed ID: 25540280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology of the tongue of Vermilingua (Xenarthra: Pilosa) and evolutionary considerations.
    Casali DM; Martins-Santos E; Santos ALQ; Miranda FR; Mahecha GAB; Perini FA
    J Morphol; 2017 Oct; 278(10):1380-1399. PubMed ID: 28643449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sloths host Anhanga virus-related phleboviruses across large distances in time and space.
    de Oliveira Filho EF; Moreira-Soto A; Fischer C; Rasche A; Sander AL; Avey-Arroyo J; Arroyo-Murillo F; Corrales-Aguilar E; Drexler JF
    Transbound Emerg Dis; 2020 Jan; 67(1):11-17. PubMed ID: 31420970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cranial osteology of the pampathere
    Gaudin TJ; Lyon LM
    PeerJ; 2017; 5():e4022. PubMed ID: 29250462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromosome painting in three-toed sloths: a cytogenetic signature and ancestral karyotype for Xenarthra.
    Azevedo NF; Svartman M; Manchester A; de Moraes-Barros N; Stanyon R; Vianna-Morgante AM
    BMC Evol Biol; 2012 Mar; 12():36. PubMed ID: 22429690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.