These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 36054687)
1. Annual carbon sequestration and loss rates under altered hydrology and fire regimes in southeastern USA pocosin peatlands. Richardson CJ; Flanagan NE; Wang H; Ho M Glob Chang Biol; 2022 Nov; 28(21):6370-6384. PubMed ID: 36054687 [TBL] [Abstract][Full Text] [Related]
2. Multiyear greenhouse gas balances at a rewetted temperate peatland. Wilson D; Farrell CA; Fallon D; Moser G; Müller C; Renou-Wilson F Glob Chang Biol; 2016 Dec; 22(12):4080-4095. PubMed ID: 27099183 [TBL] [Abstract][Full Text] [Related]
3. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related]
4. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics. Kasimir Å; He H; Coria J; Nordén A Glob Chang Biol; 2018 Aug; 24(8):3302-3316. PubMed ID: 28994230 [TBL] [Abstract][Full Text] [Related]
5. Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands. Kwon MJ; Ballantyne A; Ciais P; Qiu C; Salmon E; Raoult N; Guenet B; Göckede M; Euskirchen ES; Nykänen H; Schuur EAG; Turetsky MR; Dieleman CM; Kane ES; Zona D Glob Chang Biol; 2022 Nov; 28(22):6752-6770. PubMed ID: 36039832 [TBL] [Abstract][Full Text] [Related]
6. Changing climatic controls on the greenhouse gas balance of thermokarst bogs during succession after permafrost thaw. Heffernan L; Estop-Aragonés C; Kuhn MA; Holger-Knorr K; Olefeldt D Glob Chang Biol; 2024 Jul; 30(7):e17388. PubMed ID: 38967139 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands. Lin F; Zuo H; Ma X; Ma L Environ Pollut; 2022 May; 301():119041. PubMed ID: 35217134 [TBL] [Abstract][Full Text] [Related]
8. High emissions of greenhouse gases from grasslands on peat and other organic soils. Tiemeyer B; Albiac Borraz E; Augustin J; Bechtold M; Beetz S; Beyer C; Drösler M; Ebli M; Eickenscheidt T; Fiedler S; Förster C; Freibauer A; Giebels M; Glatzel S; Heinichen J; Hoffmann M; Höper H; Jurasinski G; Leiber-Sauheitl K; Peichl-Brak M; Roßkopf N; Sommer M; Zeitz J Glob Chang Biol; 2016 Dec; 22(12):4134-4149. PubMed ID: 27029402 [TBL] [Abstract][Full Text] [Related]
9. Full-cycle greenhouse gas balance of a Sphagnum paludiculture site on former bog grassland in Germany. Daun C; Huth V; Gaudig G; Günther A; Krebs M; Jurasinski G Sci Total Environ; 2023 Jun; 877():162943. PubMed ID: 36934933 [TBL] [Abstract][Full Text] [Related]
10. A 1-year greenhouse gas budget of a peatland exposed to long-term nutrient infiltration and altered hydrology: high carbon uptake and methane emission. Berger S; Braeckevelt E; Blodau C; Burger M; Goebel M; Klemm O; Knorr KH; Wagner-Riddle C Environ Monit Assess; 2019 Aug; 191(9):533. PubMed ID: 31375936 [TBL] [Abstract][Full Text] [Related]
11. Elevating water table reduces net ecosystem carbon losses from global drained wetlands. Liu N; Wang Q; Zhou R; Zhang R; Tian D; Gaffney PPJ; Chen W; Gan D; Zhang Z; Niu S; Ma L; Wang J Glob Chang Biol; 2024 Sep; 30(9):e17495. PubMed ID: 39235092 [TBL] [Abstract][Full Text] [Related]
12. Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands. Anthony TL; Silver WL Glob Chang Biol; 2021 Oct; 27(20):5141-5153. PubMed ID: 34260788 [TBL] [Abstract][Full Text] [Related]
13. Impact of fertiliser, water table, and warming on celery yield and CO Matysek M; Leake J; Banwart S; Johnson I; Page S; Kaduk J; Smalley A; Cumming A; Zona D Sci Total Environ; 2019 Jun; 667():179-190. PubMed ID: 30826678 [TBL] [Abstract][Full Text] [Related]
14. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia. Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590 [TBL] [Abstract][Full Text] [Related]
15. The greenhouse gas emission effects of rewetting drained peatlands and growing wetland plants for biogas fuel production. Martens M; Karlsson NPE; Ehde PM; Mattsson M; Weisner SEB J Environ Manage; 2021 Jan; 277():111391. PubMed ID: 33049611 [TBL] [Abstract][Full Text] [Related]
16. Soil greenhouse gas emissions from drained and rewetted agricultural bare peat mesocosms are linked to geochemistry. Nielsen CK; Elsgaard L; Jørgensen U; Lærke PE Sci Total Environ; 2023 Oct; 896():165083. PubMed ID: 37391135 [TBL] [Abstract][Full Text] [Related]
17. Carbon and climate implications of rewetting a raised bog in Ireland. Wilson D; Mackin F; Tuovinen JP; Moser G; Farrell C; Renou-Wilson F Glob Chang Biol; 2022 Nov; 28(21):6349-6365. PubMed ID: 35904068 [TBL] [Abstract][Full Text] [Related]
18. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio. Nag SK; Liu R; Lal R Environ Monit Assess; 2017 Oct; 189(11):580. PubMed ID: 29063197 [TBL] [Abstract][Full Text] [Related]
19. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis. Tan L; Ge Z; Zhou X; Li S; Li X; Tang J Glob Chang Biol; 2020 Mar; 26(3):1638-1653. PubMed ID: 31755630 [TBL] [Abstract][Full Text] [Related]
20. Response of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the southeastern United States. Swails EE; Ardón M; Krauss KW; Peralta AL; Emanuel RE; Helton AM; Morse JL; Gutenberg L; Cormier N; Shoch D; Settlemyer S; Soderholm E; Boutin BP; Peoples C; Ward S Carbon Balance Manag; 2022 Nov; 17(1):18. PubMed ID: 36401735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]