These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. McCalmont J; Kho LK; Teh YA; Lewis K; Chocholek M; Rumpang E; Hill T Glob Chang Biol; 2021 Jun; 27(11):2361-2376. PubMed ID: 33528067 [TBL] [Abstract][Full Text] [Related]
25. A drained nutrient-poor peatland forest in boreal Sweden constitutes a net carbon sink after integrating terrestrial and aquatic fluxes. Tong CHM; Noumonvi KD; Ratcliffe J; Laudon H; Järveoja J; Drott A; Nilsson MB; Peichl M Glob Chang Biol; 2024 Mar; 30(3):e17246. PubMed ID: 38501699 [TBL] [Abstract][Full Text] [Related]
26. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia. Sakabe A; Itoh M; Hirano T; Kusin K Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421 [TBL] [Abstract][Full Text] [Related]
27. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH Lupascu M; Akhtar H; Smith TEL; Sukri RS Glob Chang Biol; 2020 Sep; 26(9):5125-5145. PubMed ID: 32475055 [TBL] [Abstract][Full Text] [Related]
28. Spatiotemporal changes in greenhouse gas emissions and soil organic carbon sequestration for major cropping systems across China and their drivers over the past two decades. Wang Y; Tao F; Yin L; Chen Y Sci Total Environ; 2022 Aug; 833():155087. PubMed ID: 35421495 [TBL] [Abstract][Full Text] [Related]
29. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon. Mander Ü; Espenberg M; Melling L; Kull A Biogeochemistry; 2024; 167(4):523-543. PubMed ID: 38707516 [TBL] [Abstract][Full Text] [Related]
30. Comparison of GHG emissions from annual crops in rotation on drained temperate agricultural peatland with production of reed canary grass in paludiculture using an LCA approach. Thers H; Knudsen MT; Lærke PE Heliyon; 2023 Jun; 9(6):e17320. PubMed ID: 37441396 [TBL] [Abstract][Full Text] [Related]
31. Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Liu C; Yao Z; Wang K; Zheng X; Li B Sci Total Environ; 2019 Jan; 647():895-904. PubMed ID: 30096677 [TBL] [Abstract][Full Text] [Related]
32. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Gao B; Huang T; Ju X; Gu B; Huang W; Xu L; Rees RM; Powlson DS; Smith P; Cui S Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572 [TBL] [Abstract][Full Text] [Related]
33. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758 [TBL] [Abstract][Full Text] [Related]
34. Climate change mitigation and improvement of water quality from the restoration of a subtropical coastal wetland. Iram N; Maher DT; Lovelock CE; Baker T; Cadier C; Adame MF Ecol Appl; 2022 Jul; 32(5):e2620. PubMed ID: 35389535 [TBL] [Abstract][Full Text] [Related]
35. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Koebsch F; Gottschalk P; Beyer F; Wille C; Jurasinski G; Sachs T Philos Trans R Soc Lond B Biol Sci; 2020 Oct; 375(1810):20190685. PubMed ID: 32892736 [TBL] [Abstract][Full Text] [Related]
36. Responsible agriculture must adapt to the wetland character of mid-latitude peatlands. Freeman BWJ; Evans CD; Musarika S; Morrison R; Newman TR; Page SE; Wiggs GFS; Bell NGA; Styles D; Wen Y; Chadwick DR; Jones DL Glob Chang Biol; 2022 Jun; 28(12):3795-3811. PubMed ID: 35243734 [TBL] [Abstract][Full Text] [Related]
37. Overriding water table control on managed peatland greenhouse gas emissions. Evans CD; Peacock M; Baird AJ; Artz RRE; Burden A; Callaghan N; Chapman PJ; Cooper HM; Coyle M; Craig E; Cumming A; Dixon S; Gauci V; Grayson RP; Helfter C; Heppell CM; Holden J; Jones DL; Kaduk J; Levy P; Matthews R; McNamara NP; Misselbrook T; Oakley S; Page SE; Rayment M; Ridley LM; Stanley KM; Williamson JL; Worrall F; Morrison R Nature; 2021 May; 593(7860):548-552. PubMed ID: 33882562 [TBL] [Abstract][Full Text] [Related]
38. Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law. Jurasinski G; Barthelmes A; Byrne KA; Chojnicki BH; Christiansen JR; Decleer K; Fritz C; Günther AB; Huth V; Joosten H; Juszczak R; Juutinen S; Kasimir Å; Klemedtsson L; Koebsch F; Kotowski W; Kull A; Lamentowicz M; Lindgren A; Lindsay R; Linkevičienė R; Lohila A; Mander Ü; Manton M; Minkkinen K; Peters J; Renou-Wilson F; Sendžikaitė J; Šimanauskienė R; Taminskas J; Tanneberger F; Tegetmeyer C; van Diggelen R; Vasander H; Wilson D; Zableckis N; Zak DH; Couwenberg J Ambio; 2024 Jul; 53(7):970-983. PubMed ID: 38696060 [TBL] [Abstract][Full Text] [Related]
39. Full GHG balance of a drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes. Karki S; Elsgaard L; Kandel TP; Lærke PE Environ Monit Assess; 2015 Mar; 187(3):62. PubMed ID: 25647790 [TBL] [Abstract][Full Text] [Related]
40. Water level changes in Lake Erie drive 21st century CO Morin TH; Riley WJ; Grant RF; Mekonnen Z; Stefanik KC; Sanchez ACR; Mulhare MA; Villa J; Wrighton K; Bohrer G Sci Total Environ; 2022 May; 821():153087. PubMed ID: 35038507 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]