BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36054836)

  • 1. Histidine-Containing Dipeptides Mitigate Salt Stress in Plants by Scavenging Reactive Carbonyl Species.
    Sultana MS; Yamamoto SI; Biswas MS; Sakurai C; Isoai H; Mano J
    J Agric Food Chem; 2022 Sep; 70(36):11169-11178. PubMed ID: 36054836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.
    Mano J; Nagata M; Okamura S; Shiraya T; Mitsui T
    Plant Cell Physiol; 2014 Jul; 55(7):1233-44. PubMed ID: 24850833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism.
    Mano J
    Plant Physiol Biochem; 2012 Oct; 59():90-7. PubMed ID: 22578669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress.
    Yin L; Mano J; Tanaka K; Wang S; Zhang M; Deng X; Zhang S
    Physiol Plant; 2017 Oct; 161(2):211-223. PubMed ID: 28432686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants.
    Biswas MS; Mano J
    Plant Physiol; 2015 Jul; 168(3):885-98. PubMed ID: 26025050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Reactive Carbonyl Species, Which Mediate Reactive Oxygen Species Signals in Plant Cells.
    Mano J; Biswas MS; Sugimoto K; Murata Y
    Methods Mol Biol; 2022; 2526():201-213. PubMed ID: 35657522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Carbonyl Species Activate Caspase-3-Like Protease to Initiate Programmed Cell Death in Plants.
    Biswas MS; Mano J
    Plant Cell Physiol; 2016 Jul; 57(7):1432-1442. PubMed ID: 27106783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Carbonyl Species: A Missing Link in ROS Signaling.
    Mano J; Biswas MS; Sugimoto K
    Plants (Basel); 2019 Sep; 8(10):. PubMed ID: 31575078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive Carbonyl Species Mediate Methyl Jasmonate-Induced Stomatal Closure.
    Islam MM; Ye W; Akter F; Rhaman MS; Matsushima D; Munemasa S; Okuma E; Nakamura Y; Biswas MS; Mano J; Murata Y
    Plant Cell Physiol; 2020 Oct; 61(10):1788-1797. PubMed ID: 32810268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling.
    Biswas MS; Mano J
    Front Plant Sci; 2021; 12():720867. PubMed ID: 34777410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in auxin signaling for lateral root formation.
    Biswas MS; Fukaki H; Mori IC; Nakahara K; Mano J
    Plant J; 2019 Nov; 100(3):536-548. PubMed ID: 31306517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detoxification of Reactive Carbonyl Species by Glutathione Transferase Tau Isozymes.
    Mano J; Kanameda S; Kuramitsu R; Matsuura N; Yamauchi Y
    Front Plant Sci; 2019; 10():487. PubMed ID: 31068955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of Reactive Carbonyl Species (RCS) in Plant Response to Abiotic Stress.
    Sonmez MC; Yirmibesoglu SSS; Ozgur R; Uzilday B; Turkan I
    Methods Mol Biol; 2024; 2798():101-130. PubMed ID: 38587738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives.
    Aldini G; Facino RM; Beretta G; Carini M
    Biofactors; 2005; 24(1-4):77-87. PubMed ID: 16403966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive Carbonyl Species Inhibit Blue-Light-Dependent Activation of the Plasma Membrane H+-ATPase and Stomatal Opening.
    Murakami N; Fuji S; Yamauchi S; Hosotani S; Mano J; Takemiya A
    Plant Cell Physiol; 2022 Aug; 63(8):1168-1176. PubMed ID: 35786727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imidazole dipeptides can quench toxic 4-oxo-2(E)-nonenal: Molecular mechanism and mass spectrometric characterization of the reaction products.
    Tatsuno F; Lee SH; Oe T
    J Pept Sci; 2018 Aug; 24(8-9):e3097. PubMed ID: 29971858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive Carbonyl Species Function as Signal Mediators Downstream of H2O2 Production and Regulate [Ca2+]cyt Elevation in ABA Signal Pathway in Arabidopsis Guard Cells.
    Islam MM; Ye W; Matsushima D; Rhaman MS; Munemasa S; Okuma E; Nakamura Y; Biswas MS; Mano J; Murata Y
    Plant Cell Physiol; 2019 May; 60(5):1146-1159. PubMed ID: 30796836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls.
    Singh M; Kapoor A; Bhatnagar A
    Chem Biol Interact; 2015 Jun; 234():261-73. PubMed ID: 25559856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications.
    Xie Z; Baba SP; Sweeney BR; Barski OA
    Chem Biol Interact; 2013 Feb; 202(1-3):288-97. PubMed ID: 23313711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural dipeptides as mini-chaperones: molecular mechanism of inhibition of lens βL-crystallin aggregation.
    Dizhevskaya AK; Muranov KO; Boldyrev AA; Ostrovsky MA
    Curr Aging Sci; 2012 Dec; 5(3):236-41. PubMed ID: 23387882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.