These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 36054880)

  • 21. High frequency MoS2 nanomechanical resonators.
    Lee J; Wang Z; He K; Shan J; Feng PX
    ACS Nano; 2013 Jul; 7(7):6086-91. PubMed ID: 23738924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale arrays of single- and few-layer MoS2 nanomechanical resonators.
    Jia H; Yang R; Nguyen AE; Alvillar SN; Empante T; Bartels L; Feng PX
    Nanoscale; 2016 May; 8(20):10677-85. PubMed ID: 27150738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical tensile structures with ultralow mechanical dissipation.
    Bereyhi MJ; Beccari A; Groth R; Fedorov SA; Arabmoheghi A; Kippenberg TJ; Engelsen NJ
    Nat Commun; 2022 Jun; 13(1):3097. PubMed ID: 35654776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators.
    Sansa M; Fernández-Regúlez M; Llobet J; San Paulo Á; Pérez-Murano F
    Nat Commun; 2014 Jul; 5():4313. PubMed ID: 25000256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.
    Joshi RK; Schneider JJ
    Chem Soc Rev; 2012 Aug; 41(15):5285-312. PubMed ID: 22722888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrahigh-quality-factor micro- and nanomechanical resonators using dissipation dilution.
    Engelsen NJ; Beccari A; Kippenberg TJ
    Nat Nanotechnol; 2024 Jun; 19(6):725-737. PubMed ID: 38443697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoelectromechanical systems.
    Craighead HG
    Science; 2000 Nov; 290(5496):1532-6. PubMed ID: 11090343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems.
    Kumar M; Bhaskaran H
    Nano Lett; 2015 Apr; 15(4):2562-7. PubMed ID: 25723099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomechanical Sensing for Mass Flow Control in Nanowire-Based Open Nanofluidic Systems.
    Escobar JE; Molina J; Gil-Santos E; Ruz JJ; Malvar Ó; Kosaka PM; Tamayo J; San Paulo Á; Calleja M
    ACS Nano; 2023 Nov; 17(21):21044-21055. PubMed ID: 37903505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency Stabilization of Nanomechanical Resonators Using Thermally Invariant Strain Engineering.
    Wang M; Zhang R; Ilic R; Aksyuk V; Liu Y
    Nano Lett; 2020 May; 20(5):3050-3057. PubMed ID: 32250636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonvolatile Rewritable Frequency Tuning of a Nanoelectromechanical Resonator Using Photoinduced Doping.
    Miller D; Blaikie A; Alemán BJ
    Nano Lett; 2020 Apr; 20(4):2378-2386. PubMed ID: 32191481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion.
    Zheng XQ; Lee J; Feng PX
    Microsyst Nanoeng; 2017; 3():17038. PubMed ID: 31057874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators.
    Verbridge SS; Shapiro DF; Craighead HG; Parpia JM
    Nano Lett; 2007 Jun; 7(6):1728-35. PubMed ID: 17497822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring Frequency Fluctuations in Nonlinear Nanomechanical Resonators.
    Maillet O; Zhou X; Gazizulin RR; Ilic R; Parpia JM; Bourgeois O; Fefferman AD; Collin E
    ACS Nano; 2018 Jun; 12(6):5753-5760. PubMed ID: 29733575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrahigh-quality graphene resonators by liquid-based strain-engineering.
    Chen DR; Hu IF; Chin HT; Yao YC; Raman R; Hofmann M; Liang CT; Hsieh YP
    Nanoscale Horiz; 2023 Dec; 9(1):156-161. PubMed ID: 37947058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrawide Band Gap β-Ga
    Zheng XQ; Lee J; Rafique S; Han L; Zorman CA; Zhao H; Feng PX
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43090-43097. PubMed ID: 29115818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the nonlinearity of graphene mechanical resonators by Joule heating.
    Suo JJ; Li WJ; Cheng ZD; Zhao ZF; Chen H; Li BL; Zhou Q; Wang Y; Song HZ; Niu XB; Deng GW
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35779515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies.
    Cha J; Daraio C
    Nat Nanotechnol; 2018 Nov; 13(11):1016-1020. PubMed ID: 30201989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase-Controlled Growth of One-Dimensional Mo
    Yu Y; Wang G; Tan Y; Wu N; Zhang XA; Qin S
    Nano Lett; 2018 Feb; 18(2):675-681. PubMed ID: 29262252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.