These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36054959)
1. Numerical modeling of an abiotic hyporheic mixing-dependent reaction: Chemical evolution of mixing and reactant production zones. Santizo KY; Widdowson MA; Hester ET J Contam Hydrol; 2022 Dec; 251():104066. PubMed ID: 36054959 [TBL] [Abstract][Full Text] [Related]
2. Hyporheic transverse mixing zones and dispersivity: Laboratory and numerical experiments of hydraulic controls. Hester ET; Santizo KY; Nida AA; Widdowson MA J Contam Hydrol; 2021 Dec; 243():103885. PubMed ID: 34488177 [TBL] [Abstract][Full Text] [Related]
3. Effects of boundary hydraulics, dissolved oxygen, and dissolved organic carbon on growth and death dynamics of aerobic microbes in riverbed dune-induced hyporheic zones. Monterroso H; Widdowson MA; Lotts WS; Strom KB; Hester ET Sci Total Environ; 2024 Jan; 906():167401. PubMed ID: 37769729 [TBL] [Abstract][Full Text] [Related]
4. Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry. Peter KT; Herzog S; Tian Z; Wu C; McCray JE; Lynch K; Kolodziej EP Water Res; 2019 Mar; 150():140-152. PubMed ID: 30508711 [TBL] [Abstract][Full Text] [Related]
5. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river. Cardenas MB; Markowski MS Environ Sci Technol; 2011 Feb; 45(4):1407-11. PubMed ID: 21194211 [TBL] [Abstract][Full Text] [Related]
6. Evolution of plume geometry, dilution and reactive mixing in porous media under highly transient flow fields at the surface water-groundwater interface. Basilio Hazas M; Ziliotto F; Lee J; Rolle M; Chiogna G J Contam Hydrol; 2023 Sep; 258():104243. PubMed ID: 37696230 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. Freitas JG; Rivett MO; Roche RS; Durrant Neé Cleverly M; Walker C; Tellam JH Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025 [TBL] [Abstract][Full Text] [Related]
8. MTBE, TBA, and TAME attenuation in diverse hyporheic zones. Landmeyer JE; Bradley PM; Trego DA; Hale KG; Haas JE Ground Water; 2010; 48(1):30-41. PubMed ID: 19664047 [TBL] [Abstract][Full Text] [Related]
9. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale. Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908 [TBL] [Abstract][Full Text] [Related]
10. First-order contaminant removal in the hyporheic zone of streams: physical insights from a simple analytical model. Grant SB; Stolzenbach K; Azizian M; Stewardson MJ; Boano F; Bardini L Environ Sci Technol; 2014 Oct; 48(19):11369-78. PubMed ID: 25181637 [TBL] [Abstract][Full Text] [Related]
11. Determining hyporheic removal rates of trace organic compounds using non-parametric conservative transport with multiple sorption models. Höhne A; Lewandowski J; Schaper JL; McCallum JL Water Res; 2021 Nov; 206():117750. PubMed ID: 34678696 [TBL] [Abstract][Full Text] [Related]
12. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession. Malzone JM; Lowry CS Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212 [TBL] [Abstract][Full Text] [Related]
13. Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem. Nick HM; Raoof A; Centler F; Thullner M; Regnier P J Contam Hydrol; 2013 Feb; 145():90-104. PubMed ID: 23334209 [TBL] [Abstract][Full Text] [Related]
14. Combining pyrosequencing and isotopic approaches to assess denitrification in a hyporheic zone. Kim H; Kaown D; Mayer B; Lee JY; Lee KK Sci Total Environ; 2018 Aug; 631-632():755-764. PubMed ID: 29544179 [TBL] [Abstract][Full Text] [Related]
15. Level and distribution of nutrients in the hyporheic zone of Lake Taihu (China) and potential drivers. Li Y; Wang Y; Xu C Water Environ Res; 2019 Sep; 91(9):926-939. PubMed ID: 31054178 [TBL] [Abstract][Full Text] [Related]
16. Revealing chlorinated ethene transformation hotspots in a nitrate-impacted hyporheic zone. Weatherill JJ; Krause S; Ullah S; Cassidy NJ; Levy A; Drijfhout FP; Rivett MO Water Res; 2019 Sep; 161():222-231. PubMed ID: 31200219 [TBL] [Abstract][Full Text] [Related]
17. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes. Mugunthan P; Russell KT; Gong B; Riley MJ; Chin A; McDonald BG; Eastcott LJ Ground Water; 2017 May; 55(3):302-315. PubMed ID: 27775831 [TBL] [Abstract][Full Text] [Related]
18. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption. Meghdadi A Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318 [TBL] [Abstract][Full Text] [Related]
19. Excess N Hinshaw SE; Zhang T; Harrison JA; Dahlgren RA Water Res; 2020 Jan; 168():115161. PubMed ID: 31654960 [TBL] [Abstract][Full Text] [Related]
20. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]