These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36055078)
61. An antifouling electrochemiluminescence sensor based on mesoporous CuO Tang Y; Hu X; Liu Y; Chen Y; Zhao F; Zeng B Biosens Bioelectron; 2022 Oct; 214():114492. PubMed ID: 35779409 [TBL] [Abstract][Full Text] [Related]
62. Plasmon-Boosted Fe, Co Dual Single-Atom Catalysts for Ultrasensitive Luminol-Dissolved O Bushira FA; Wang P; Wang Y; Hou S; Diao X; Li H; Zheng L; Jin Y Anal Chem; 2022 Jul; 94(27):9758-9765. PubMed ID: 35749700 [TBL] [Abstract][Full Text] [Related]
63. A novel electrochemiluminescence immunoassay based on highly efficient resonance energy transfer for florfenicol detection. Ma G; Wu P; Wu K; Deng A; Li J Talanta; 2021 Dec; 235():122732. PubMed ID: 34517600 [TBL] [Abstract][Full Text] [Related]
64. A novel signal amplified electrochemiluminescence biosensor based on MIL-53(Al)@CdS QDs and SiO Feng D; Wei F; Wu Y; Tan X; Li F; Lu Y; Fan G; Han H Analyst; 2021 Feb; 146(4):1295-1302. PubMed ID: 33350406 [TBL] [Abstract][Full Text] [Related]
65. Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein. Cao Y; Yuan R; Chai Y; Liu H; Liao Y; Zhuo Y Talanta; 2013 Sep; 113():106-12. PubMed ID: 23708630 [TBL] [Abstract][Full Text] [Related]
66. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO Zhang W; Xiong H; Chen M; Zhang X; Wang S Biosens Bioelectron; 2017 Oct; 96():55-61. PubMed ID: 28460332 [TBL] [Abstract][Full Text] [Related]
67. Hemin-graphene oxide-gold nanoflower-assisted enhanced electrochemiluminescence immunosensor for determination of prostate-specific antigen. Liu G; Guan X; Li B; Zhou H; Kong N; Wang H Mikrochim Acta; 2022 Jul; 189(8):297. PubMed ID: 35900602 [TBL] [Abstract][Full Text] [Related]
68. Electrochemiluminescence quenching effect of Cu Yu H; Cui Q; Li F; Wang Y; Liao X; Hu L; Ma H; Wu D; Wei Q; Ju H Talanta; 2024 Sep; 277():126321. PubMed ID: 38805945 [TBL] [Abstract][Full Text] [Related]
69. A novel "on-off-on" electrochemiluminescence strategy based on RNA cleavage propelled signal amplification and resonance energy transfer for Pb Gong Q; Xu X; Cheng Y; Wang X; Liu D; Nie G Anal Chim Acta; 2024 Feb; 1290():342218. PubMed ID: 38246744 [TBL] [Abstract][Full Text] [Related]
70. Coordination-induced self-assembly based carbon dot dendrimers as efficient signal labels for electrochemiluminescent immunosensor construction. Lin Z; Cheng W; Liu C; Zhao M; Ding S; Deng Z Talanta; 2023 Mar; 254():124101. PubMed ID: 36470015 [TBL] [Abstract][Full Text] [Related]
71. Controlled-Release Electrochemiluminescence Biosensor with Strong Self-On Effect by a Multiple Signal Amplification Strategy for Trace Detection of Prostate-Specific Antigen. Huang Z; Zhao L; Guo Q; Fan D; Ren X; Wei Q; Wu D Anal Chem; 2024 Apr; 96(17):6659-6665. PubMed ID: 38635916 [TBL] [Abstract][Full Text] [Related]
72. Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. Dong Y; Wu H; Shang P; Zeng X; Chi Y Nanoscale; 2015 Oct; 7(39):16366-71. PubMed ID: 26391198 [TBL] [Abstract][Full Text] [Related]
73. Signal-off electrochemiluminescence immunosensors based on the quenching effect between curcumin-conjugated Au nanoparticles encapsulated in ZIF-8 and CdS-decorated TiO Du Y; Li X; Ren X; Wang H; Wu D; Ma H; Fan D; Wei Q Analyst; 2020 Mar; 145(5):1858-1864. PubMed ID: 31970343 [TBL] [Abstract][Full Text] [Related]
74. AuNPs@MoSe Shi Y; Wu J; Wu W; Luo N; Huang H; Chen Y; Sun J; Yu Q; Ao H; Xu Q; Wu X; Xia Q; Ju H Biosens Bioelectron; 2023 Feb; 222():114976. PubMed ID: 36516632 [TBL] [Abstract][Full Text] [Related]
75. Sensitive electrochemiluminescent immunosensor for diabetic nephropathy analysis based on tris(bipyridine) ruthenium(II) derivative with binary intramolecular self-catalyzed property. Wang H; Chai Y; Li H; Yuan R Biosens Bioelectron; 2018 Feb; 100():35-40. PubMed ID: 28858679 [TBL] [Abstract][Full Text] [Related]
76. Potential-resolved electrochemiluminescence biosensor for simultaneous determination of multiplex miRNA. Sun Y; Ge S; Liu R; Wang S; Liu C; Li L; Zhao P; Ge S; Yu J Talanta; 2024 Jan; 266(Pt 2):125063. PubMed ID: 37572473 [TBL] [Abstract][Full Text] [Related]
77. Nano-hybrid luminophores of Ti Zhang H; Wang L; Zhuang T; Wei Z; Xia J; Wang Z Anal Bioanal Chem; 2022 Sep; 414(23):6753-6760. PubMed ID: 35909164 [TBL] [Abstract][Full Text] [Related]
78. Electrochemiluminescence resonance energy transfer immunoassay based on a porphyrin metal-organic framework and AuNPs/NSG for the sensitive detection of zearalenone. Fan X; Yao X; Qiu M; Wu K; Deng A; Li J Analyst; 2023 Nov; 148(22):5691-5697. PubMed ID: 37823327 [TBL] [Abstract][Full Text] [Related]
79. Highly Efficient Signal On/Off Electrochemiluminescence Gel Aptasensor Based on a Controlled Release Strategy for the Sensitive Detection of Prostate Specific Antigen. Zhao L; Song X; Fan D; Liu X; Wang H; Wei Q; Wu D Anal Chem; 2023 Apr; 95(13):5695-5701. PubMed ID: 36952259 [TBL] [Abstract][Full Text] [Related]
80. Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel "on-off-on" switch system. Zhao M; Zhuo Y; Chai YQ; Yuan R Biomaterials; 2015 Jun; 52():476-83. PubMed ID: 25818453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]