BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 36055098)

  • 21. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new strategy for improving the energy efficiency of electro-Fenton: Using N-doped activated carbon cathode with strong Fe(III) adsorption capacity to promote Fe(II) regeneration.
    Jia Y; Li H; Zhao H; Zhang G; Zhang Z; Zhang X; Zhou W
    J Environ Manage; 2024 Apr; 357():120823. PubMed ID: 38583380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-loaded leonardite powder for Fenton oxidation of Reactive Red 180 dye removal.
    Arslan H; Bouchareb R; Arikan EB; Dizge N
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77071-77080. PubMed ID: 35676574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fenton-driven chemical regeneration of MTBE-spent granular activated carbon--a pilot study.
    Huling SG; Kan E; Caldwell C; Park S
    J Hazard Mater; 2012 Feb; 205-206():55-62. PubMed ID: 22260751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerated electron transfer process via MOF-derived FeCo/C for enhanced degradation of antibiotic contaminants towards heterogeneous electro-Fenton system.
    Zhong D; Zhang J; Huang J; Ma W; Li K; Li J; Zhang S; Li Z
    Chemosphere; 2023 Sep; 335():138994. PubMed ID: 37211168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced mineralization of hypersaline wastewater with Fe
    Yang X; Yang Z; Liu Z; Zhang W; Wang D
    Water Sci Technol; 2018 Oct; 78(5-6):1219-1227. PubMed ID: 30339546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transforming waste brake pads from automobiles into Nano-Catalyst: Synergistic Fe-C-Cu triple sites for efficient fenton-like oxidation of organic pollutants.
    Qi F; Peng J; Liang Z; Guo J; Yin J; Song A; Li Z; Liu J; Fang T; Zhang J; Wu L; Zhang Q; Wang T; Du Z; Mao H
    Waste Manag; 2024 Mar; 175():225-234. PubMed ID: 38218093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.
    Ma J; Yang M; Yu F; Chen J
    J Colloid Interface Sci; 2015 Apr; 444():24-32. PubMed ID: 25585283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic activity and mechanism of typical iron-based catalysts for Fenton-like oxidation.
    Liu X; Yao Y; Lu J; Zhou J; Chen Q
    Chemosphere; 2023 Jan; 311(Pt 1):136972. PubMed ID: 36283427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organics removal and in-situ granule activated carbon regeneration in FBR-Fenton/GAC process for reverse osmosis concentrate treatment.
    Cai QQ; Wu MY; Hu LM; Lee BCY; Ong SL; Wang P; Hu JY
    Water Res; 2020 Sep; 183():116119. PubMed ID: 32663698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pretreatment of old-age landfill leachate by microwave-assisted catalytic oxidation in the presence of activated carbon.
    Xu XC; Zhang HT; Dong ZY; Fan YF
    Environ Technol; 2013; 34(17-20):2853-8. PubMed ID: 24527650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal.
    Jiao Y; Ma L; Tian Y; Zhou M
    Chemosphere; 2020 Aug; 252():126483. PubMed ID: 32197180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defective iron based metal-organic frameworks derived from zero-valent iron for highly efficient fenton-like catalysis.
    Duan L; Jiang H; Wu W; Lin D; Yang K
    J Hazard Mater; 2023 Mar; 445():130426. PubMed ID: 36462241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activated carbon fiber as an efficient co-catalyst toward accelerating Fe
    Zhao Y; Wang A; Ren S; Zhang Y; Zhang N; Song Y; Zhang Z
    Environ Res; 2024 May; 249():118254. PubMed ID: 38301762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1,4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species.
    Tian K; Pan J; Liu Y; Wang P; Zhong M; Dong Y; Wang M
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19738-19752. PubMed ID: 38363503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment.
    Kurniawan TA; Lo WH
    Water Res; 2009 Sep; 43(16):4079-91. PubMed ID: 19695663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of aniline from water by an Fe(II)-nano-Fe
    Yang C; Wang D; Tang Q; MacRae JY
    Environ Technol; 2021 Jan; 42(4):545-557. PubMed ID: 31244385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process.
    Bocos E; Oturan N; Pazos M; Sanromán MÁ; Oturan MA
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19134-44. PubMed ID: 27349786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.
    Yatagai T; Ohkawa Y; Kubo D; Kawase Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):74-83. PubMed ID: 27726493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.