These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36055160)

  • 1. Full wave simulation of arterial response under acoustic radiation force.
    Roy T; Guddati MN
    Comput Biol Med; 2022 Oct; 149():106021. PubMed ID: 36055160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arterial waveguide model for shear wave elastography: implementation and in vitro validation.
    Astaneh AV; Urban MW; Aquino W; Greenleaf JF; Guddati MN
    Phys Med Biol; 2017 Jul; 62(13):5473-5494. PubMed ID: 28609299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full waveform inversion for arterial viscoelasticity.
    Roy T; Guddati MN
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36753775
    [No Abstract]   [Full Text] [Related]  

  • 4. An ultrasound elastography method to determine the local stiffness of arteries with guided circumferential waves.
    Li GY; He Q; Xu G; Jia L; Luo J; Cao Y
    J Biomech; 2017 Jan; 51():97-104. PubMed ID: 27989313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force.
    Lee KH; Szajewski BA; Hah Z; Parker KJ; Maniatty AM
    Int J Numer Method Biomed Eng; 2012; 28(6-7):678-96. PubMed ID: 25364845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study.
    Maksuti E; Bini F; Fiorentini S; Blasi G; Urban MW; Marinozzi F; Larsson M
    Phys Med Biol; 2017 Apr; 62(7):2694-2718. PubMed ID: 28081009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward improved accuracy in shear wave elastography of arteries through controlling the arterial response to ultrasound perturbation in-silico and in phantoms.
    Hugenberg NR; Roy T; Harrigan H; Capriotti M; Lee HK; Guddati M; Greenleaf JF; Urban MW; Aquino W
    Phys Med Biol; 2021 Nov; 66(23):. PubMed ID: 34763319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media.
    Palmeri ML; Qiang B; Chen S; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):78-92. PubMed ID: 28026760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear wave propagation in viscoelastic media: validation of an approximate forward model.
    Zvietcovich F; Baddour N; Rolland JP; Parker KJ
    Phys Med Biol; 2019 Jan; 64(2):025008. PubMed ID: 30524099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study.
    Palmeri ML; Feltovich H; Homyk AD; Carlson LC; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2053-64. PubMed ID: 24081254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic radiation force-driven assessment of myocardial elasticity using the displacement ratio rate (DRR) method.
    Bouchard RR; Hsu SJ; Palmeri ML; Rouze NC; Nightingale KR; Trahey GE
    Ultrasound Med Biol; 2011 Jul; 37(7):1087-100. PubMed ID: 21645966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Inverse Method to Determine Arterial Stiffness with Guided Axial Waves.
    Li GY; He Q; Jia L; He P; Luo J; Cao Y
    Ultrasound Med Biol; 2017 Feb; 43(2):505-516. PubMed ID: 27908486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.
    Zhu J; Qu Y; Ma T; Li R; Du Y; Huang S; Shung KK; Zhou Q; Chen Z
    Opt Lett; 2015 May; 40(9):2099-102. PubMed ID: 25927794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing blood clots using acoustic radiation force optical coherence elastography and ultrasound shear wave elastography.
    Liu HC; Abbasi M; Ding YH; Roy T; Capriotti M; Liu Y; Fitzgerald S; Doyle KM; Guddati M; Urban MW; Brinjikji W
    Phys Med Biol; 2021 Jan; 66(3):035013. PubMed ID: 33202384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D mapping of elastic modulus using shear wave optical micro-elastography.
    Zhu J; Qi L; Miao Y; Ma T; Dai C; Qu Y; He Y; Gao Y; Zhou Q; Chen Z
    Sci Rep; 2016 Oct; 6():35499. PubMed ID: 27762276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile and experimentally validated finite element model to assess the accuracy of shear wave elastography in a bounded viscoelastic medium.
    Caenen A; Shcherbakova D; Verhegghe B; Papadacci C; Pernot M; Segers P; Swillens A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):439-50. PubMed ID: 25768813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance shear wave elastography using transient acoustic radiation force excitations and sinusoidal displacement encoding.
    Hofstetter LW; Odéen H; Bolster BD; Christensen DA; Payne A; Parker DL
    Phys Med Biol; 2021 Feb; 66(5):. PubMed ID: 33352538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.