These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36055160)

  • 21. Analysis of multiple shear wave modes in a nonlinear soft solid: Experiments and finite element simulations with a tilted acoustic radiation force.
    Caenen A; Knight AE; Rouze NC; Bottenus NB; Segers P; Nightingale KR
    J Mech Behav Biomed Mater; 2020 Jul; 107():103754. PubMed ID: 32364950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A finite element model to study the effect of tissue anisotropy on ex vivo arterial shear wave elastography measurements.
    Shcherbakova DA; Debusschere N; Caenen A; Iannaccone F; Pernot M; Swillens A; Segers P
    Phys Med Biol; 2017 Jul; 62(13):5245-5275. PubMed ID: 28471755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multimodal guided wave inversion for arterial stiffness: methodology and validation in phantoms.
    Roy T; Urban M; Xu Y; Greenleaf J; Guddati MN
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 34061042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of wave propagation through a tube using dual transducers for elastography in arteries.
    Lee HK; Capron CB; Liu HC; Roy T; Guddati MN; Greenleaf JF; Urban MW
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36265476
    [No Abstract]   [Full Text] [Related]  

  • 26. Dynamic simulation of viscoelastic soft tissue in acoustic radiation force creep imaging.
    Zhao X; Pelegri AA
    J Biomech Eng; 2014 Sep; 136(9):094502. PubMed ID: 24975997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding.
    Hofstetter LW; Odéen H; Bolster BD; Mueller A; Christensen DA; Payne A; Parker DL
    Magn Reson Med; 2019 May; 81(5):3153-3167. PubMed ID: 30663806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.
    Zhao X; Pelegri AA
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02741. PubMed ID: 26255624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved two-point frequency shift power method for measurement of shear wave attenuation.
    Kijanka P; Urban MW
    Ultrasonics; 2022 Aug; 124():106735. PubMed ID: 35390627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Scholte wave approach for ultrasonic surface acoustic wave elastography.
    Liu J; Leer J; Aglayomov SR; Emelianov SY
    Med Phys; 2023 Jul; 50(7):4138-4150. PubMed ID: 36971512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of acoustic radiation force beam shape and location on wave spectral content for arterial dispersion ultrasound vibrometry.
    Capriotti M; Roy T; Hugenberg NR; Harrigan H; Lee HC; Aquino W; Guddati M; Greenleaf JF; Urban MW
    Phys Med Biol; 2022 Jun; 67(13):. PubMed ID: 35654033
    [No Abstract]   [Full Text] [Related]  

  • 33. Evaluation of carotid artery stiffness in patients with coronary artery disease using acoustic radiation force impulse elastography.
    Alan B; Alan S
    Vascular; 2023 Jun; 31(3):564-572. PubMed ID: 35226579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts.
    Ouared A; Montagnon E; Cloutier G
    Phys Med Biol; 2015 Oct; 60(20):8161-85. PubMed ID: 26439616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.
    Lipman SL; Rouze NC; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1049-1063. PubMed ID: 28458448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating Shear Wave Physics in a Generic Pediatric Left Ventricular Model via In Vitro Experiments and Finite Element Simulations.
    Caenen A; Pernot M; Shcherbakova DA; Mertens L; Kersemans M; Segers P; Swillens A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):349-361. PubMed ID: 27845660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A digital viscoelastic liver phantom for investigation of elastographic measurements.
    Pasyar P; Masjoodi S; Montazeriani Z; Makkiabadi B
    Comput Biol Med; 2020 Dec; 127():104078. PubMed ID: 33126121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC; Qian X; Ma T; Han Z; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1887-1898. PubMed ID: 29993652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modified error in constitutive equations (MECE) approach for ultrasound elastography.
    Ghosh S; Zou Z; Babaniyi O; Aquino W; Diaz MI; Bayat M; Fatemi M
    J Acoust Soc Am; 2017 Oct; 142(4):2084. PubMed ID: 29092577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.
    Rouze NC; Wang MH; Palmeri ML; Nightingale KR
    J Biomech; 2013 Nov; 46(16):2761-8. PubMed ID: 24094454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.