These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 36055178)

  • 1. Plastics to fuel or plastics: Life cycle assessment-based evaluation of different options for pyrolysis at end-of-life.
    Das S; Liang C; Dunn JB
    Waste Manag; 2022 Nov; 153():81-88. PubMed ID: 36055178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy and environmental assessment of plastic granule production from recycled greenhouse covering films in a circular economy perspective.
    Cascone S; Ingrao C; Valenti F; Porto SMC
    J Environ Manage; 2020 Jan; 254():109796. PubMed ID: 31731026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis.
    N S
    Sci Total Environ; 2022 Feb; 809():151160. PubMed ID: 34695478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
    Erkmen B; Ozdogan A; Ezdesir A; Celik G
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics.
    Gebre SH; Sendeku MG; Bahri M
    ChemistryOpen; 2021 Dec; 10(12):1202-1226. PubMed ID: 34873881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter.
    Kusenberg M; Faussone GC; Thi HD; Roosen M; Grilc M; Eschenbacher A; De Meester S; Van Geem KM
    Sci Total Environ; 2022 Sep; 838(Pt 2):156092. PubMed ID: 35605869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis of mixed engineering plastics: Economic challenges for automotive plastic waste.
    Stallkamp C; Hennig M; Volk R; Stapf D; Schultmann F
    Waste Manag; 2024 Mar; 176():105-116. PubMed ID: 38277808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks.
    Kumi-Larbi A; Yunana D; Kamsouloum P; Webster M; Wilson DC; Cheeseman C
    Waste Manag; 2018 Oct; 80():112-118. PubMed ID: 30454990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process Simulation and Life Cycle Assessment of Waste Plastics: A Comparison of Pyrolysis and Hydrocracking.
    Azam MU; Vete A; Afzal W
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recommendations for life-cycle assessment of recyclable plastics in a circular economy.
    Nordahl SL; Scown CD
    Chem Sci; 2024 Jun; 15(25):9397-9407. PubMed ID: 38939149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO.
    Huo E; Lei H; Liu C; Zhang Y; Xin L; Zhao Y; Qian M; Zhang Q; Lin X; Wang C; Mateo W; Villota EM; Ruan R
    Sci Total Environ; 2020 Jul; 727():138411. PubMed ID: 32334209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment.
    Li C; Yuan X; Sun Z; Suvarna M; Hu X; Wang X; Ok YS
    Bioresour Technol; 2022 Feb; 346():126582. PubMed ID: 34953989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes.
    Canopoli L; Fidalgo B; Coulon F; Wagland ST
    Waste Manag; 2018 Jun; 76():55-67. PubMed ID: 29622377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation-pyrolysis of fibre waste from a paper recycling mill for the production of fuel products.
    Brown LJ; Collard FX; Gottumukkala LD; Görgens J
    Waste Manag; 2021 Feb; 120():364-372. PubMed ID: 33340818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a pyrolyser model for the conversion of thermoplastics into fuels.
    Dassi Djoukouo NH; Djousse BMK; Doukeng HG; Egbe DAM; Tangka JK; Tchoffo M
    Heliyon; 2024 Mar; 10(5):e26702. PubMed ID: 38463835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.