These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 36055251)
1. Experiments and numerical simulations on hovering three-dimensional flexible flapping wings. Diaz-Arriba D; Jardin T; Gourdain N; Pons F; David L Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055251 [TBL] [Abstract][Full Text] [Related]
2. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Wang ZJ; Birch JM; Dickinson MH J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093 [TBL] [Abstract][Full Text] [Related]
3. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight. Lee YJ; Lua KB Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443 [TBL] [Abstract][Full Text] [Related]
4. Optimal pitching axis location of flapping wings for efficient hovering flight. Wang Q; Goosen JFL; van Keulen F Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144 [TBL] [Abstract][Full Text] [Related]
5. Phenomenology and scaling of optimal flapping wing kinematics. Gehrke A; Mulleners K Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765 [TBL] [Abstract][Full Text] [Related]
6. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Nakata T; Liu H Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896 [TBL] [Abstract][Full Text] [Related]
7. Capturing wake capture: a 2D numerical investigation into wing-wake interaction aerodynamics. Li H; Nabawy MRA Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36215970 [TBL] [Abstract][Full Text] [Related]
8. Ground effect on the aerodynamics of three-dimensional hovering wings. Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156 [TBL] [Abstract][Full Text] [Related]
9. Effects of spanwise flexibility on the performance of flapping flyers in forward flight. Kodali D; Medina C; Kang CK; Aono H J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167372 [TBL] [Abstract][Full Text] [Related]
10. Investigation of chordwise functionally graded flexural rigidity in flapping wings using a two-dimensional pitch-plunge model. Reade J; Jankauski M Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055234 [TBL] [Abstract][Full Text] [Related]
11. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight. Van Truong T; Le TQ; Park HC; Byun D Bioinspir Biomim; 2017 May; 12(3):036012. PubMed ID: 28513472 [TBL] [Abstract][Full Text] [Related]
13. Aerodynamic effects of flexibility in flapping wings. Zhao L; Huang Q; Deng X; Sane SP J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394 [TBL] [Abstract][Full Text] [Related]
14. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
15. Effect of passive wing pitching on flight control in a hovering model insect and flapping-wing micro air vehicle. Hao J; Wu J; Zhang Y Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34450611 [TBL] [Abstract][Full Text] [Related]
16. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective. Nabawy MRA; Crowther WJ J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395 [TBL] [Abstract][Full Text] [Related]
17. A numerical study on the aerodynamic effects of dynamic twisting on forward flight flapping wings. Dong Y; Song B; Yang W; Xue D Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306681 [TBL] [Abstract][Full Text] [Related]
18. To tread or not to tread: comparison between water treading and conventional flapping wing kinematics. Krishna S; Gehrke A; Mulleners K Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36228610 [TBL] [Abstract][Full Text] [Related]
19. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. Kang CK; Shyy W J R Soc Interface; 2014 Dec; 11(101):20140933. PubMed ID: 25297319 [TBL] [Abstract][Full Text] [Related]
20. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Sun M; Tang J J Exp Biol; 2002 Jan; 205(Pt 1):55-70. PubMed ID: 11818412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]