These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36055359)

  • 1. Impact of sphingomyelin acyl chain heterogeneity upon properties of raft-like membranes.
    Hirano K; Kinoshita M; Matsumori N
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184036. PubMed ID: 36055359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly formation of minor dihydrosphingomyelin in sphingomyelin-rich ordered membrane domains.
    Kinoshita M; Kyo T; Matsumori N
    Sci Rep; 2020 Jul; 10(1):11794. PubMed ID: 32678223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM; Feigenson GW
    Biochim Biophys Acta; 2016 Jan; 1858(1):153-61. PubMed ID: 26525664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha ; Sawatzki P; Kolter T; Bittman R; London E
    Biochim Biophys Acta; 2007 Sep; 1768(9):2205-12. PubMed ID: 17574203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miscibility phase diagrams of giant vesicles containing sphingomyelin.
    Veatch SL; Keller SL
    Phys Rev Lett; 2005 Apr; 94(14):148101. PubMed ID: 15904115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of sphingomyelin acyl chain (16:0 vs 24:1) on the interfacial properties of Langmuir monolayers: A PM-IRRAS study.
    Vázquez RF; Daza Millone MA; Pavinatto FJ; Fanani ML; Oliveira ON; Vela ME; Maté SM
    Colloids Surf B Biointerfaces; 2019 Jan; 173():549-556. PubMed ID: 30347381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers.
    Filippov A; Orädd G; Lindblom G
    Biophys J; 2006 Mar; 90(6):2086-92. PubMed ID: 16387761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-nervonoylsphingomyelin (C24:1) prevents lateral heterogeneity in cholesterol-containing membranes.
    Maté S; Busto JV; García-Arribas AB; Sot J; Vazquez R; Herlax V; Wolf C; Bakás L; Goñi FM
    Biophys J; 2014 Jun; 106(12):2606-16. PubMed ID: 24940778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.
    Matsumori N; Okazaki H; Nomura K; Murata M
    Chem Phys Lipids; 2011 Jul; 164(5):401-8. PubMed ID: 21664344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine.
    Pandit SA; Jakobsson E; Scott HL
    Biophys J; 2004 Nov; 87(5):3312-22. PubMed ID: 15339797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disrupting membrane raft domains by alkylphospholipids.
    Gomide AB; Thomé CH; dos Santos GA; Ferreira GA; Faça VM; Rego EM; Greene LJ; Stabeli RG; Ciancaglini P; Itri R
    Biochim Biophys Acta; 2013 May; 1828(5):1384-9. PubMed ID: 23376656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingomyelin Acyl Chains Influence the Formation of Sphingomyelin- and Cholesterol-Enriched Domains.
    Engberg O; Lin KL; Hautala V; Slotte JP; Nyholm TKM
    Biophys J; 2020 Sep; 119(5):913-923. PubMed ID: 32755561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation.
    Wassall SR; Leng X; Canner SW; Pennington ER; Kinnun JJ; Cavazos AT; Dadoo S; Johnson D; Heberle FA; Katsaras J; Shaikh SR
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1985-1993. PubMed ID: 29730243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (rafts) in solid-supported bilayers.
    Salamon Z; Devanathan S; Alves ID; Tollin G
    J Biol Chem; 2005 Mar; 280(12):11175-84. PubMed ID: 15668234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emphatic visualization of sphingomyelin-rich domains by inter-lipid FRET imaging using fluorescent sphingomyelins.
    Kinoshita M; Ano H; Murata M; Shigetomi K; Ikenouchi J; Matsumori N
    Sci Rep; 2017 Dec; 7(1):16801. PubMed ID: 29196620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.