These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36055509)
1. Basin management inspiration from impacts of alternating dry and wet conditions on water production and carbon uptake in Murray-Darling Basin. Lu Z; Feng Q; Wei Y; Zhao Y; Deo RC; Xie J; Zhou S; Zhu M; Xu M Sci Total Environ; 2022 Dec; 851(Pt 2):158359. PubMed ID: 36055509 [TBL] [Abstract][Full Text] [Related]
2. Continental impacts of water development on waterbirds, contrasting two Australian river basins: Global implications for sustainable water use. Kingsford RT; Bino G; Porter JL Glob Chang Biol; 2017 Nov; 23(11):4958-4969. PubMed ID: 28578561 [TBL] [Abstract][Full Text] [Related]
3. Climate warming negatively affects plant water-use efficiency in a seasonal hydroperiod wetland. Wei S; Chu X; Sun B; Yuan W; Song W; Zhao M; Wang X; Li P; Han G Water Res; 2023 Aug; 242():120246. PubMed ID: 37348421 [TBL] [Abstract][Full Text] [Related]
4. Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. Zhao J; Feng H; Xu T; Xiao J; Guerrieri R; Liu S; Wu X; He X; He X Sci Total Environ; 2021 Mar; 758():143599. PubMed ID: 33250244 [TBL] [Abstract][Full Text] [Related]
5. Water planning and hydro-climatic change in the Murray-Darling Basin, Australia. Grafton RQ; Pittock J; Williams J; Jiang Q; Possingham H; Quiggin J Ambio; 2014 Dec; 43(8):1082-92. PubMed ID: 24570213 [TBL] [Abstract][Full Text] [Related]
6. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Wang X; Ciais P; Wang Y; Zhu D Glob Chang Biol; 2018 Oct; 24(10):4709-4717. PubMed ID: 29851198 [TBL] [Abstract][Full Text] [Related]
7. Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems. Bennett AC; Arndt SK; Bennett LT; Knauer J; Beringer J; Griebel A; Hinko-Najera N; Liddell MJ; Metzen D; Pendall E; Silberstein RP; Wardlaw TJ; Woodgate W; Haverd V Glob Chang Biol; 2021 Oct; 27(19):4727-4744. PubMed ID: 34165839 [TBL] [Abstract][Full Text] [Related]
8. Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5-3.0 °C warming levels using CMIP6-GCMs. Mondal SK; Tao H; Huang J; Wang Y; Su B; Zhai J; Jing C; Wen S; Jiang S; Chen Z; Jiang T Sci Total Environ; 2021 Oct; 789():147867. PubMed ID: 34052498 [TBL] [Abstract][Full Text] [Related]
9. Grassland gross carbon dioxide uptake based on an improved model tree ensemble approach considering human interventions: global estimation and covariation with climate. Liang W; Lü Y; Zhang W; Li S; Jin Z; Ciais P; Fu B; Wang S; Yan J; Li J; Su H Glob Chang Biol; 2017 Jul; 23(7):2720-2742. PubMed ID: 27976458 [TBL] [Abstract][Full Text] [Related]
10. Integrating the Budyko framework with the emerging hot spot analysis in local land use planning for regulating surface evapotranspiration ratio. Fan PY; Chun KP; Mijic A; Tan ML; Yetemen O J Environ Manage; 2022 Aug; 316():115232. PubMed ID: 35569354 [TBL] [Abstract][Full Text] [Related]
11. Bringing ecosystem services into integrated water resources management. Liu S; Crossman ND; Nolan M; Ghirmay H J Environ Manage; 2013 Nov; 129():92-102. PubMed ID: 23900082 [TBL] [Abstract][Full Text] [Related]
12. 'Sub-Prime' Water, Low-Security Entitlements and Policy Challenges in Over-Allocated River Basins: the Case of the Murray-Darling Basin. Moore HE; Rutherfurd ID; Peel MC; Horne A Environ Manage; 2020 Aug; 66(2):202-217. PubMed ID: 32430552 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River Basin of eastern China. Li M; Chu R; Islam ARMT; Shen S Environ Sci Pollut Res Int; 2021 Jan; 28(1):683-699. PubMed ID: 32820438 [TBL] [Abstract][Full Text] [Related]
14. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis. Barman R; Jain AK; Liang M Glob Chang Biol; 2014 May; 20(5):1394-411. PubMed ID: 24273031 [TBL] [Abstract][Full Text] [Related]
15. [MODIS-driven estimation of regional evapotranspiration in Karst area of Southwest China based on the Penman-Monteith-Leuning algorithm.]. Zhong HZ; Xu XL; Zhang RF; Liu MX Ying Yong Sheng Tai Xue Bao; 2018 May; 29(5):1617-1625. PubMed ID: 29797895 [TBL] [Abstract][Full Text] [Related]
16. Assessment of ecosystem resilience to hydroclimatic disturbances in India. Sharma A; Goyal MK Glob Chang Biol; 2018 Feb; 24(2):e432-e441. PubMed ID: 28905461 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal patterns and effects of climate and land use on surface water extent dynamics in a dryland region with three decades of Landsat satellite data. Tulbure MG; Broich M Sci Total Environ; 2019 Mar; 658():1574-1585. PubMed ID: 30678015 [TBL] [Abstract][Full Text] [Related]
18. Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa. Quansah E; Mauder M; Balogun AA; Amekudzi LK; Hingerl L; Bliefernicht J; Kunstmann H Carbon Balance Manag; 2015 Dec; 10(1):1. PubMed ID: 25632297 [TBL] [Abstract][Full Text] [Related]
19. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Xu Z; Fan W; Wei H; Zhang P; Ren J; Gao Z; Ulgiati S; Kong W; Dong X Sci Total Environ; 2019 Feb; 652():117-133. PubMed ID: 30359796 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the variation in potential evapotranspiration and surface wet conditions in the Hancang River Basin, China. Zhang H; Wang L Sci Rep; 2021 Apr; 11(1):8607. PubMed ID: 33883673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]