These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 36055519)

  • 1. Impacts of neonatal methylmercury on behavioral flexibility and learning in spatial discrimination reversal and visual signal detection tasks.
    Kendricks DR; Bhattacharya S; Reed MN; Newland MC
    Neurotoxicology; 2022 Dec; 93():9-21. PubMed ID: 36055519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adolescent methylmercury exposure alters short-term remembering, but not sustained attention, in male Long-Evans rats.
    Kendricks DR; Boomhower SR; Arnold MA; Glenn DJ; Newland MC
    Neurotoxicology; 2020 May; 78():186-194. PubMed ID: 32199988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gestational exposure to methylmercury and selenium: effects on a spatial discrimination reversal in adulthood.
    Reed MN; Paletz EM; Newland MC
    Neurotoxicology; 2006 Sep; 27(5):721-32. PubMed ID: 16759706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and visual discrimination reversals in adult and geriatric rats exposed during gestation to methylmercury and n-3 polyunsaturated fatty acids.
    Paletz EM; Day JJ; Craig-Schmidt MC; Newland MC
    Neurotoxicology; 2007 Jul; 28(4):707-19. PubMed ID: 17582499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylmercury, attention, and memory: baseline-dependent effects of adult d-amphetamine and marginal effects of adolescent methylmercury.
    Kendricks DR; Boomhower SR; Newland MC
    Neurotoxicology; 2020 Sep; 80():130-139. PubMed ID: 32726658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of adolescent exposure to methylmercury and d-amphetamine on reversal learning and an extradimensional shift in male mice.
    Boomhower SR; Newland MC
    Exp Clin Psychopharmacol; 2017 Apr; 25(2):64-73. PubMed ID: 28287789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response inhibition is impaired by developmental methylmercury exposure: acquisition of low-rate lever-pressing.
    Newland MC; Hoffman DJ; Heath JC; Donlin WD
    Behav Brain Res; 2013 Sep; 253():196-205. PubMed ID: 23721962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats.
    Marquis JP; Goulet S; Doré FY
    Neurobiol Learn Mem; 2008 Sep; 90(2):339-46. PubMed ID: 18490183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapamycin Improves Spatial Learning Deficits, Vulnerability to Alcohol Addiction and Altered Expression of the GluN2B Subunit of the NMDA Receptor in Adult Rats Exposed to Ethanol during the Neonatal Period.
    Lopatynska-Mazurek M; Antolak A; Grochecki P; Gibula-Tarlowska E; Bodzon-Kulakowska A; Listos J; Kedzierska E; Suder P; Silberring J; Kotlinska JH
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33924998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pre- plus postnatal exposure to methylmercury in the monkey on fixed interval and discrimination reversal performance.
    Rice DC
    Neurotoxicology; 1992; 13(2):443-52. PubMed ID: 1436760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gestational exposure to methylmercury retards choice in transition in aging rats.
    Newland MC; Reile PA; Langston JL
    Neurotoxicol Teratol; 2004; 26(2):179-94. PubMed ID: 15019952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute exposure to methylmercury at two developmental windows: focus on neurobehavioral and neurochemical effects in rat offspring.
    Carratù MR; Borracci P; Coluccia A; Giustino A; Renna G; Tomasini MC; Raisi E; Antonelli T; Cuomo V; Mazzoni E; Ferraro L
    Neuroscience; 2006 Sep; 141(3):1619-29. PubMed ID: 16781816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CE-123, a novel dopamine transporter inhibitor, attenuates locomotor hyperactivity and improves cognitive functions in rat model of fetal alcohol spectrum disorders.
    Gibula-Tarlowska E; Korz V; Lopatynska-Mazurek M; Chlopas-Konowalek A; Grochecki P; Kalaba P; Dragacevic V; Kotlinski R; Kujawski R; Szulc M; Czora-Poczwardowska K; Mikolajczak PL; Lubec G; Kotlinska JH
    Behav Brain Res; 2021 Jul; 410():113326. PubMed ID: 33940050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental exposure to methylmercury elicits early cell death in the cerebral cortex and long-term memory deficits in the rat.
    Ferraro L; Tomasini MC; Tanganelli S; Mazza R; Coluccia A; Carratù MR; Gaetani S; Cuomo V; Antonelli T
    Int J Dev Neurosci; 2009 Apr; 27(2):165-74. PubMed ID: 19084587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial alternation deficits following developmental exposure to Aroclor 1254 and/or methylmercury in rats.
    Widholm JJ; Villareal S; Seegal RF; Schantz SL
    Toxicol Sci; 2004 Dec; 82(2):577-89. PubMed ID: 15456922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural stem cell apoptosis after low-methylmercury exposures in postnatal hippocampus produce persistent cell loss and adolescent memory deficits.
    Sokolowski K; Obiorah M; Robinson K; McCandlish E; Buckley B; DiCicco-Bloom E
    Dev Neurobiol; 2013 Dec; 73(12):936-49. PubMed ID: 23959606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hypothesis about how early developmental methylmercury exposure disrupts behavior in adulthood.
    Newland MC; Reed MN; Rasmussen E
    Behav Processes; 2015 May; 114():41-51. PubMed ID: 25795099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum.
    Grospe GM; Baker PM; Ragozzino ME
    Neuroscience; 2018 Mar; 374():80-90. PubMed ID: 29374536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal alcohol exposure impairs acquisition of eyeblink conditioned responses during discrimination learning and reversal in weanling rats.
    Brown KL; Calizo LH; Goodlett CR; Stanton ME
    Dev Psychobiol; 2007 Apr; 49(3):243-57. PubMed ID: 17380527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys.
    Seu E; Lang A; Rivera RJ; Jentsch JD
    Psychopharmacology (Berl); 2009 Jan; 202(1-3):505-19. PubMed ID: 18604598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.