These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 36055574)
1. Metabolomic and transcriptomic analysis of roots of tobacco varieties resistant and susceptible to bacterial wilt. Shi H; Xu P; Yu W; Cheng Y; Ding A; Wang W; Wu S; Sun Y Genomics; 2022 Sep; 114(5):110471. PubMed ID: 36055574 [TBL] [Abstract][Full Text] [Related]
2. Naringenin restricts the colonization and growth of Ralstonia solanacearum in tobacco mutant KCB-1. Shi H; Jiang J; Yu W; Cheng Y; Wu S; Zong H; Wang X; Ding A; Wang W; Sun Y Plant Physiol; 2024 Jun; 195(3):1818-1834. PubMed ID: 38573326 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Zhang C; Chen H; Cai T; Deng Y; Zhuang R; Zhang N; Zeng Y; Zheng Y; Tang R; Pan R; Zhuang W Plant Biotechnol J; 2017 Jan; 15(1):39-55. PubMed ID: 27311738 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomics and virus-induced gene silencing identify defence-related genes during Ralstonia solanacearum infection in resistant and susceptible tobacco. Xiao Z; Liu Z; Zhang H; Yang A; Cheng L; Liu D; Jiang C; Yu S; Yang Z; Ren M; Geng R Genomics; 2024 Mar; 116(2):110784. PubMed ID: 38199265 [TBL] [Abstract][Full Text] [Related]
5. Uncovering the transcriptional responses of tobacco (Nicotiana tabacum L.) roots to Ralstonia solanacearum infection: a comparative study of resistant and susceptible cultivars. Zhang H; Ikram M; Li R; Xia Y; Zhao W; Yuan Q; Siddique KHM; Guo P BMC Plant Biol; 2023 Dec; 23(1):620. PubMed ID: 38057713 [TBL] [Abstract][Full Text] [Related]
6. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Lowe-Power TM; Hendrich CG; von Roepenack-Lahaye E; Li B; Wu D; Mitra R; Dalsing BL; Ricca P; Naidoo J; Cook D; Jancewicz A; Masson P; Thomma B; Lahaye T; Michael AJ; Allen C Environ Microbiol; 2018 Apr; 20(4):1330-1349. PubMed ID: 29215193 [TBL] [Abstract][Full Text] [Related]
7. Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo. Chen J; Yu Y; Li S; Ding W Molecules; 2016 Nov; 21(11):. PubMed ID: 27834875 [TBL] [Abstract][Full Text] [Related]
8. NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Liu Y; Liu Q; Tang Y; Ding W Biochem Biophys Res Commun; 2019 Jan; 508(3):940-945. PubMed ID: 30545635 [TBL] [Abstract][Full Text] [Related]
9. Deep Sequencing Reveals Early Reprogramming of Zhao C; Wang H; Lu Y; Hu J; Qu L; Li Z; Wang D; He Y; Valls M; Coll NS; Chen Q; Lu H Mol Plant Microbe Interact; 2019 Jul; 32(7):813-827. PubMed ID: 31140930 [TBL] [Abstract][Full Text] [Related]
10. Effect and mechanism of NaHS on tobacco bacterial wilt caused by Ralstonia solanacearum. Wen D; Guo Q; Zhao W; Yang Y; Yang C; Yu J; Hu Y Sci Rep; 2023 Feb; 13(1):2462. PubMed ID: 36774417 [TBL] [Abstract][Full Text] [Related]
11. Metabolomic Profiling of the Host Response of Tomato ( Zeiss DR; Mhlongo MI; Tugizimana F; Steenkamp PA; Dubery IA Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31416118 [TBL] [Abstract][Full Text] [Related]
12. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. Chen Y; Ren X; Zhou X; Huang L; Yan L; Lei Y; Liao B; Huang J; Huang S; Wei W; Jiang H BMC Genomics; 2014 Dec; 15(1):1078. PubMed ID: 25481772 [TBL] [Abstract][Full Text] [Related]
13. Ralstonia solanacearum differentially modulates soil physicochemical properties and rhizospheric bacteriome of resistant and susceptible tobacco cultivars. Ahmed W; Dai Z; Zhang J; Shakeel Q; Kamaruzzaman M; Nosheen S; Mohany M; Ahmed A; Cai S; Wang Y; Gao Y; Ahmad M; Munir S; Wang X Microbiol Res; 2024 Apr; 281():127604. PubMed ID: 38280370 [TBL] [Abstract][Full Text] [Related]
14. WIPK-NtLTP4 pathway confers resistance to Ralstonia solanacearum in tobacco. Xu Y; Shang K; Wang C; Yu Z; Zhao X; Song Y; Meng F; Zhu C Plant Cell Rep; 2022 Jan; 41(1):249-261. PubMed ID: 34697685 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Dang F; Wang Y; She J; Lei Y; Liu Z; Eulgem T; Lai Y; Lin J; Yu L; Lei D; Guan D; Li X; Yuan Q; He S Physiol Plant; 2014 Mar; 150(3):397-411. PubMed ID: 24032447 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial activity of Lansiumamide B to tobacco bacterial wilt (Ralstonia solanacearum). Li L; Feng X; Tang M; Hao W; Han Y; Zhang G; Wan S Microbiol Res; 2014; 169(7-8):522-6. PubMed ID: 24512921 [TBL] [Abstract][Full Text] [Related]
17. Digital gene expression analysis of the response to Ralstonia solanacearum between resistant and susceptible tobacco varieties. Li Y; Wang L; Sun G; Li X; Chen Z; Feng J; Yang Y Sci Rep; 2021 Feb; 11(1):3887. PubMed ID: 33594109 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest). Jiang Y; Huang M; Zhang M; Lan J; Wang W; Tao X; Liu Y Plant Physiol Biochem; 2018 Nov; 132():547-556. PubMed ID: 30316164 [TBL] [Abstract][Full Text] [Related]
19. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco. Lowe-Power TM; Jacobs JM; Ailloud F; Fochs B; Prior P; Allen C mBio; 2016 Jun; 7(3):. PubMed ID: 27329752 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. Zhang C; Chen H; Zhuang RR; Chen YT; Deng Y; Cai TC; Wang SY; Liu QZ; Tang RH; Shan SH; Pan RL; Chen LS; Zhuang WJ J Exp Bot; 2019 Oct; 70(19):5407-5421. PubMed ID: 31173088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]