These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 36055607)

  • 1. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery.
    Li JY; Feng YH; He YT; Hu LF; Liang L; Zhao ZQ; Chen BZ; Guo XD
    Acta Biomater; 2022 Nov; 153():308-319. PubMed ID: 36055607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Delivery of Insulin Using Rapidly Separating Microneedles Fabricated from Genipin-Crosslinked Gelatin.
    Chen BZ; Ashfaq M; Zhu DD; Zhang XP; Guo XD
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800075. PubMed ID: 29722090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapidly separating microneedles for transdermal drug delivery.
    Zhu DD; Wang QL; Liu XB; Guo XD
    Acta Biomater; 2016 Sep; 41():312-9. PubMed ID: 27265152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery.
    Luo Z; Sun W; Fang J; Lee K; Li S; Gu Z; Dokmeci MR; Khademhosseini A
    Adv Healthc Mater; 2019 Feb; 8(3):e1801054. PubMed ID: 30565887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.
    Yu W; Jiang G; Liu D; Li L; Chen H; Liu Y; Huang Q; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():725-734. PubMed ID: 27987766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responsive Hydrogel Microcarrier-Integrated Microneedles for Versatile and Controllable Drug Delivery.
    Fan L; Zhang X; Liu X; Sun B; Li L; Zhao Y
    Adv Healthc Mater; 2021 May; 10(9):e2002249. PubMed ID: 33690992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency.
    Chi Y; Zheng Y; Pan X; Huang Y; Kang Y; Zhong W; Xu K
    Acta Biomater; 2024 Jan; 174():127-140. PubMed ID: 38042262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of metformin-loaded MIL-100(Fe) into hydrogel microneedles for prolonged regulation of blood glucose levels.
    Feng M; Li Y; Sun Y; Liu T; Yunusov KE; Jiang G
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38670077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite.
    Yu W; Jiang G; Liu D; Li L; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():425-428. PubMed ID: 28183628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery.
    He MC; Chen BZ; Ashfaq M; Guo XD
    Drug Deliv Transl Res; 2018 Oct; 8(5):1034-1042. PubMed ID: 29845379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin.
    Chen JP; Leu YL; Fang CL; Chen CH; Fang JY
    J Pharm Sci; 2011 Feb; 100(2):655-66. PubMed ID: 20799367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transdermal drug delivery of rizatriptan using microneedles array patch: preparation, characterization and ex-vivo/in-vivo study.
    Al-Nimry SS; Alkilani AZ; Alda'ajeh NA
    Pharm Dev Technol; 2024 Sep; 29(7):776-789. PubMed ID: 39159078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microneedles assisted controlled and improved transdermal delivery of high molecular drugs via
    Khan S; Minhas MU; Singh Thakur RR; Aqeel MT
    Drug Dev Ind Pharm; 2022 Jun; 48(6):265-278. PubMed ID: 35899871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging novel innovative thermoresponsive polymers in microneedles for targeted intradermal deposition.
    Roussel S; Udabe J; Bin Sabri A; Calderón M; Donnelly R
    Int J Pharm; 2024 Mar; 652():123847. PubMed ID: 38266945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transdermal delivery of sinapine thiocyanate by gelatin microspheres and hyaluronic acid microneedles for allergic asthma in guinea pigs.
    Feng Y; Chang S; Jing Z; Jiang H; Liu Y; Qin G
    Int J Pharm; 2022 Jul; 623():121899. PubMed ID: 35710072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery.
    Zhou X; Liu H; Yu Z; Yu H; Meng D; Zhu L; Li H
    J Colloid Interface Sci; 2024 Sep; 670():1-11. PubMed ID: 38749378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin delivery systems combined with microneedle technology.
    Jin X; Zhu DD; Chen BZ; Ashfaq M; Guo XD
    Adv Drug Deliv Rev; 2018 Mar; 127():119-137. PubMed ID: 29604374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel SmartReservoirs for hydrogel-forming microneedles to improve the transdermal delivery of rifampicin.
    Abraham AM; Anjani QK; Adhami M; Hutton ARJ; Larrañeta E; Donnelly RF
    J Mater Chem B; 2024 May; 12(18):4375-4388. PubMed ID: 38477350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.