These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36056012)

  • 1. Optical-Tweezers-integrating-Differential-Dynamic-Microscopy maps the spatiotemporal propagation of nonlinear strains in polymer blends and composites.
    Peddireddy KR; Clairmont R; Neill P; McGorty R; Robertson-Anderson RM
    Nat Commun; 2022 Sep; 13(1):5180. PubMed ID: 36056012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Actin Deformations Lead to Network Stiffening, Yielding, and Nonuniform Stress Propagation.
    Gurmessa B; Ricketts S; Robertson-Anderson RM
    Biophys J; 2017 Oct; 113(7):1540-1550. PubMed ID: 28214480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected entanglement dynamics in semidilute blends of supercoiled and ring DNA.
    Peddireddy KR; Lee M; Zhou Y; Adalbert S; Anderson S; Schroeder CM; Robertson-Anderson RM
    Soft Matter; 2020 Jan; 16(1):152-161. PubMed ID: 31774103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Conformation Dictates Strength and Flocculation in DNA-Microtubule Composites.
    Peddireddy KR; Michieletto D; Aguirre G; Garamella J; Khanal P; Robertson-Anderson RM
    ACS Macro Lett; 2021 Dec; 10(12):1540-1548. PubMed ID: 35549144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Tweezers Microrheology Maps the Dynamics of Strain-Induced Local Inhomogeneities in Entangled Polymers.
    Khan M; Regan K; Robertson-Anderson RM
    Phys Rev Lett; 2019 Jul; 123(3):038001. PubMed ID: 31386434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.
    Baclayon M; Kalisch SM; Hendel E; Laan L; Husson J; Munteanu EL; Dogterom M
    Methods Mol Biol; 2017; 1486():411-435. PubMed ID: 27844438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entangled F-actin displays a unique crossover to microscale nonlinearity dominated by entanglement segment dynamics.
    Falzone TT; Blair S; Robertson-Anderson RM
    Soft Matter; 2015 Jun; 11(22):4418-23. PubMed ID: 25920523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.
    Hendricks AG; Goldman YE
    Methods Mol Biol; 2017; 1486():537-552. PubMed ID: 27844443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical Entanglement and Cooperative Dynamics in Entangled Solutions of Ring and Linear Polymers.
    Michieletto D; Sakaue T
    ACS Macro Lett; 2021 Jan; 10(1):129-134. PubMed ID: 35548984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA as a Model for Probing Polymer Entanglements: Circular Polymers and Non-Classical Dynamics.
    Regan K; Ricketts S; Robertson-Anderson RM
    Polymers (Basel); 2016 Sep; 8(9):. PubMed ID: 30974610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application.
    Wozniak A; van Mameren J; Ragona S
    Curr Pharm Biotechnol; 2009 Aug; 10(5):467-73. PubMed ID: 19689314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Interactions Between DNA and Actin Trigger Emergent Viscoelastic Behavior.
    Fitzpatrick R; Michieletto D; Peddireddy KR; Hauer C; Kyrillos C; Gurmessa BJ; Robertson-Anderson RM
    Phys Rev Lett; 2018 Dec; 121(25):257801. PubMed ID: 30608839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by AMOTIV microscopy.
    Blehm BH; Devine A; Staunton JR; Tanner K
    Biomaterials; 2016 Mar; 83():66-78. PubMed ID: 26773661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers.
    Mills JP; Qie L; Dao M; Lim CT; Suresh S
    Mech Chem Biosyst; 2004 Sep; 1(3):169-80. PubMed ID: 16783930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation and breakup of viscoelastic droplets in confined shear flow.
    Gupta A; Sbragaglia M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023305. PubMed ID: 25215849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics study of tethered polymers in shear flow.
    Gratton Y; Slater GW
    Eur Phys J E Soft Matter; 2005 Aug; 17(4):455-65. PubMed ID: 16132157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-rheology on (polymer-grafted) colloids using optical tweezers.
    Gutsche C; Elmahdy MM; Kegler K; Semenov I; Stangner T; Otto O; Ueberschär O; Keyser UF; Krueger M; Rauscher M; Weeber R; Harting J; Kim YW; Lobaskin V; Netz RR; Kremer F
    J Phys Condens Matter; 2011 May; 23(18):184114. PubMed ID: 21508470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.